Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: Considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties

被引:52
作者
Kaspar, Jan [1 ]
Graczyk-Zajac, Magdalena [1 ]
Lauterbach, Stefan [2 ]
Kleebe, Hans-Joachim [2 ]
Riedel, Ralf [1 ]
机构
[1] Tech Univ Darmstadt, Inst Mat Wissensch, D-64287 Darmstadt, Germany
[2] Tech Univ Darmstadt, Inst Angew Geowissensch, D-64287 Darmstadt, Germany
关键词
Li-ion battery; Anode; Silicon oxycarbide; SiOC; Nano-silicon; Polymer-derived ceramic; PITCH-POLYSILANE BLENDS; RICH SIOC CERAMICS; REVERSIBLE LITHIUM STORAGE; CARBON-COATED SILICON; HIGH-CAPACITY ANODES; SOLID-STATE NMR; C COMPOSITE; NEGATIVE ELECTRODE; SICN CERAMICS; PART II;
D O I
10.1016/j.jpowsour.2014.06.089
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon oxycarbide/nano-silicon composites (SiOC/nSi) are prepared by mixing of nano-sized silicon, either crystalline (nSi_c) or amorphous (nSi_a), with commercially available polyorganosiloxane RD-684a and subsequent pyrolysis. The influence of the type of nano-silicon, namely crystalline vs. amorphous, on the electrochemical properties and performance is analyzed and correlated with the corresponding composite microstructure. In the case of crystalline nano-silicon, a high reversible capacity of 905 mAh g(-1) is registered, whereas that for amorphous nano-silicon embedment reaches 704 mAh g(-1) However, regarding the cycling stability, SiOC/nSi_c shows a significant capacity fading upon continuous cycling, related to SiOC matrix failure. The host phase is not able to accommodate the arising mechanical stresses upon Si grain expansion and contraction when alloying/dealloying with Li. SiOC/nSi_a on the contrary, demonstrates a stable cycling performance for up to 100 cycles. This excellent performance is explained by the enhanced matrix integrity of the compound, rationalized by a smaller size of the embedded crystallized Si grains and an intrinsically enhanced electrical conductivity due to the formation of SiC. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:164 / 172
页数:9
相关论文
共 109 条
[41]   Si-graphite composites as anode materials for lithium secondary batteries [J].
Jo, Yong Nam ;
Kim, Yeri ;
Kim, Jeom Soo ;
Song, Jun Ho ;
Kim, Ki Jae ;
Kwag, Chong Yun ;
Lee, Dong Jun ;
Park, Chul Wan ;
Kim, Young Jun .
JOURNAL OF POWER SOURCES, 2010, 195 (18) :6031-6036
[42]   Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells [J].
Kasavajjula, Uday ;
Wang, Chunsheng ;
Appleby, A. John .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :1003-1039
[43]   Stable SiOC/Sn Nanocomposite Anodes for Lithium-Ion Batteries with Outstanding Cycling Stability [J].
Kaspar, Jan ;
Terzioglu, Caglar ;
Ionescu, Emanuel ;
Graczyk-Zajac, Magdalena ;
Hapis, Stefania ;
Kleebe, Hans-Joachim ;
Riedel, Ralf .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (26) :4097-4104
[44]   Determination of the chemical diffusion coefficient of Li-ions in carbon-rich silicon oxycarbide anodes by electro-analytical methods [J].
Kaspar, Jan ;
Graczyk-Zajac, Magdalena ;
Riedel, Ralf .
ELECTROCHIMICA ACTA, 2014, 115 :665-670
[45]   Lithium insertion into carbon-rich SiOC ceramics: Influence of pyrolysis temperature on electrochemical properties [J].
Kaspar, Jan ;
Graczyk-Zajac, Magdalena ;
Riedel, Ralf .
JOURNAL OF POWER SOURCES, 2013, 244 :450-455
[46]   Carbon-rich SiOC anodes for lithium-ion batteries: Part II. Role of thermal cross-linking [J].
Kaspar, Jan ;
Graczyk-Zajac, Magdalena ;
Riedel, Ralf .
SOLID STATE IONICS, 2012, 225 :527-531
[47]   Electrochemical study of lithium insertion into carbon-rich polymer-derived silicon carbonitride ceramics [J].
Kaspar, Jan ;
Mera, Gabriela ;
Nowak, Andrzej P. ;
Graczyk-Zajac, Magdalena ;
Riedel, Ralf .
ELECTROCHIMICA ACTA, 2010, 56 (01) :174-182
[48]  
Kawamoto H., 2010, Science and Technology Trends-Quarterly Review, V36, P34
[49]   SiOC ceramic with high excess free carbon [J].
Kleebe, Hans-Joachim ;
Blum, Yigal D. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2008, 28 (05) :1037-1042
[50]  
Kleebe HJ, 2006, INT J MATER RES, V97, P699