A new type of nonsingular black-hole solution in general relativity

被引:20
作者
Klinkhamer, F. R. [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Theoret Phys, D-76128 Karlsruhe, Germany
关键词
General relativity; topology; exact solutions; SCHWARZSCHILD; GRAVITATION; EXTENSION; FIELD;
D O I
10.1142/S0217732314300183
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Certain exact solutions of the Einstein field equations over nonsimply-connected manifolds are reviewed. These solutions are spherically symmetric and have no curvature singularity. They provide a regularization of the standard Schwarzschild solution with a curvature singularity at the center. Spherically symmetric collapse of matter in R-4 may result in these nonsingular black-hole solutions, if quantum-gravity effects allow for topology change near the center or if nontrivial topology is already present as a remnant from a quantum spacetime foam.
引用
收藏
页数:19
相关论文
共 31 条
[1]   Causality and CPT violation from an Abelian Chern-Simons-like term [J].
Adam, C ;
Klinkhamer, FR .
NUCLEAR PHYSICS B, 2001, 607 (1-2) :247-267
[2]  
[Anonymous], 1922, Arkiv. Mat. Astron. Fys.
[3]   Regular black hole in general relativity coupled to nonlinear electrodynamics [J].
Ayon-Beato, E ;
Garcia, A .
PHYSICAL REVIEW LETTERS, 1998, 80 (23) :5056-5059
[4]   Bounds on length scales of classical spacetime foam models [J].
Bernadotte, S. ;
Klinkhamer, F. R. .
PHYSICAL REVIEW D, 2007, 75 (02)
[5]   Theory of diffraction by small holes [J].
Bethe, HA .
PHYSICAL REVIEW, 1944, 66 (7/8) :163-182
[6]   COMPLETE ANALYTIC EXTENSION OF REISSNER-NORDSTROM METRIC IN SPECIAL CASE E2 = M2 [J].
CARTER, B .
PHYSICS LETTERS, 1966, 21 (04) :423-&
[7]  
Garcia A., 13062549 ARXIV
[8]   OSCILLATORY CHARACTER OF REISSNER-NORDSTROM METRIC FOR AN IDEAL CHARGED WORMHOLE [J].
GRAVES, JC ;
BRILL, DR .
PHYSICAL REVIEW, 1960, 120 (04) :1507-1513
[9]  
Hawking S.W., 1973, LARGE SCALE STRUCTUR
[10]   A nonsingular spacetime defect [J].
Klinkhamer, F. R. ;
Rahmede, C. .
PHYSICAL REVIEW D, 2014, 89 (08)