Highly Stable and Reversible Lithium Storage in SnO2 Nanowires Surface Coated with a Uniform Hollow Shell by Atomic Layer Deposition

被引:257
作者
Guan, Cao [1 ]
Wang, Xinghui [2 ]
Zhang, Qing [2 ]
Fan, Zhanxi [3 ]
Zhang, Hua [3 ]
Fan, Hong Jin [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Nanoelect Ctr Excellence, NOVITAS, Singapore 639798, Singapore
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
Lithium-ion battery; tin oxide; nanowire; atomic layer deposition; battery anode; ION BATTERY ANODE; COMPOSITE ANODES; TIO2; NANOTUBE; PERFORMANCE; OXIDE; ELECTRODE; NANOSTRUCTURES; GROWTH; ARRAYS; NANOPARTICLES;
D O I
10.1021/nl502192p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
SnO2 nanowires directly grown on flexible substrates can be a good electrode for a lithium ion battery. However, Sn-based (metal Sn or SnO2) anode materials always suffer from poor stability due to a large volume expansion during cycling. In this work, we utilize atomic layer deposition (ALD) to surface engineer SnO2 nanowires, resulting in a new type of hollowed SnO2-in-TiO2 wire-in-tube nanostructure. This structure has radically improved rate capability and cycling stability compared to both bare SnO2 nanowires and solid SnO2@TiO2 core-shell nanowire electrodes. Typically a relatively stable capacity of 393.3 mAh/g has been achieved after 1000 charge-discharge cycles at a current density of 400 mA/g, and 241.2 mAh/g at 3200 mA/g. It is believed that the uniform hollow TiO2 shell provides stable surface protection and the appropriate-sized gap effectively accommodates the expansion of the interior SnO2 nanowire. This ALD-enabled method should be general to many other battery anode and cathode materials, providing a new and highly reproducible and controllable technique for improving battery performance.
引用
收藏
页码:4852 / 4858
页数:7
相关论文
共 58 条
[1]   Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries [J].
Aravindan, V. ;
Jinesh, K. B. ;
Prabhakar, Rajiv Ramanujam ;
Kale, Vinayak S. ;
Madhavi, S. .
NANO ENERGY, 2013, 2 (05) :720-725
[2]   In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage [J].
Chen, Zhongxue ;
Zhou, Min ;
Cao, Yuliang ;
Ai, Xinping ;
Yang, Hanxi ;
Liu, Jun .
ADVANCED ENERGY MATERIALS, 2012, 2 (01) :95-102
[3]   Nanostructural CoSnC anode prepared by CoSnO3 with improved cyclability for high-performance Li-ion batteries [J].
Cui, Wangjun ;
Wang, Fei ;
Wang, Jie ;
Wang, Congxiao ;
Xia, Yongyao .
ELECTROCHIMICA ACTA, 2011, 56 (13) :4812-4818
[4]   Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries [J].
Derrien, Gaelle ;
Hassoun, Jusef ;
Panero, Stefania ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2007, 19 (17) :2336-+
[5]   Hollow core-shell nanostructure supercapacitor electrodes: gap matters [J].
Guan, Cao ;
Xia, Xinhui ;
Meng, Nan ;
Zeng, Zhiyuan ;
Cao, Xiehong ;
Soci, Cesare ;
Zhang, Hua ;
Fan, Hong Jin .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (10) :9085-9090
[6]   Nanostructured 3D Electrode Architectures for High-Rate Li-Ion Batteries [J].
Haag, Jacob M. ;
Pattanaik, Gyanaranjan ;
Durstock, Michael F. .
ADVANCED MATERIALS, 2013, 25 (23) :3238-3243
[7]   Reactivation of dissolved polysulfides in Li-S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth [J].
Han, Xiaogang ;
Xu, Yunhua ;
Chen, Xinyi ;
Chen, Yu-Chen ;
Weadock, Nicholas ;
Wan, Jiayu ;
Zhu, Hongli ;
Liu, Yonglin ;
Li, Heqin ;
Rubloff, Gary ;
Wang, Chunsheng ;
Hu, Liangbing .
NANO ENERGY, 2013, 2 (06) :1197-1206
[8]   Engineered Si Electrode Nanoarchitecture: A Scalable Postfabrication Treatment for the Production of Next-Generation Li-Ion Batteries [J].
Hassan, Fathy M. ;
Chabot, Victor ;
Elsayed, Abdel Rahman ;
Xiao, Xingcheng ;
Chen, Zhongwei .
NANO LETTERS, 2014, 14 (01) :277-283
[9]   Ternary Sn-Co-CLi-ion battery electrode material prepared by high energy ball milling [J].
Hassoun, J. ;
Mulas, G. ;
Panero, S. ;
Scrosati, B. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (08) :2075-2081
[10]   A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries [J].
He, Min ;
Yuan, Lixia ;
Hu, Xianluo ;
Zhang, Wuxing ;
Shu, Jie ;
Huang, Yunhui .
NANOSCALE, 2013, 5 (08) :3298-3305