Linear magnetoresistance in the low-field limit in density-wave materials

被引:48
作者
Feng, Yejun [1 ]
Wang, Yishu [2 ]
Silevitch, D. M. [2 ]
Yan, J. -Q. [3 ]
Kobayashi, Riki [1 ,4 ]
Hedo, Masato [4 ]
Nakama, Takao [4 ]
Onuki, Yoshichika [4 ]
Suslov, A. V. [5 ]
Mihaila, B. [6 ]
Littlewood, P. B. [7 ,8 ]
Rosenbaum, T. F. [2 ]
机构
[1] Grad Univ, Okinawa Inst Sci & Technol, Onna, Okinawa 9040495, Japan
[2] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[3] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[4] Univ Ryukyus, Fac Sci, Nishihara, Okinawa 9030213, Japan
[5] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[6] Natl Sci Fdn, Arlington, VA 22230 USA
[7] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[8] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
基金
日本学术振兴会; 美国国家科学基金会;
关键词
linear magnetoresistance; density-wave materials; Fermi surface; GALVANOMAGNETIC PROPERTIES; NONSATURATING MAGNETORESISTANCE; STATE;
D O I
10.1073/pnas.1820092116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The magnetoresistance (MR) of a material is typically insensitive to reversing the applied field direction and varies quadratically with magnetic field in the low-field limit. Quantum effects, unusual topological band structures, and inhomogeneities that lead to wandering current paths can induce a cross-over from quadratic to linear MR with increasing magnetic field. Here we explore a series of metallic charge-and spin-density-wave systems that exhibit extremely large positive linear MR. By contrast to other linear MR mechanisms, this effect remains robust down to miniscule magnetic fields of tens of Oersted at low temperature. We frame an explanation of this phenomenon in a semiclassical narrative for a broad category of materials with partially gapped Fermi surfaces due to density waves.
引用
收藏
页码:11201 / 11206
页数:6
相关论文
共 26 条
[1]   WEAK-FIELD GALVANOMAGNETIC PROPERTIES OF A NEW TYPE OF METALLIC MODEL [J].
AAGAIER, RS ;
PERL, R .
PHYSICAL REVIEW B, 1970, 2 (04) :877-&
[2]   Quantum magnetoresistance [J].
Abrikosov, AA .
PHYSICAL REVIEW B, 1998, 58 (05) :2788-2794
[3]   Quantum linear magnetoresistance [J].
Abrikosov, AA .
EUROPHYSICS LETTERS, 2000, 49 (06) :789-793
[4]   Large, non-saturating magnetoresistance in WTe2 [J].
Ali, Mazhar N. ;
Xiong, Jun ;
Flynn, Steven ;
Tao, Jing ;
Gibson, Quinn D. ;
Schoop, Leslie M. ;
Liang, Tian ;
Haldolaarachchige, Neel ;
Hirschberger, Max ;
Ong, N. P. ;
Cava, R. J. .
NATURE, 2014, 514 (7521) :205-+
[5]   HIGH-FIELD GALVANOMAGNETIC EFFECTS IN ANTIFERROMAGNETIC CHROMIUM [J].
ARKO, AJ ;
MARCUS, JA ;
REED, WA .
PHYSICAL REVIEW, 1968, 176 (02) :671-&
[6]   EXPERIMENTAL AND THEORETICAL INVESTIGATION OF THE MAGNETIC PHASE-DIAGRAM OF CHROMIUM [J].
BARAK, Z ;
FAWCETT, E ;
FEDER, D ;
LORINCZ, G ;
WALKER, MB .
JOURNAL OF PHYSICS F-METAL PHYSICS, 1981, 11 (04) :915-945
[7]   EFFECTS OF HIGH MAGNETIC-FIELDS ON CHARGE-DENSITY WAVES IN NBSE3 [J].
COLEMAN, RV ;
EVERSON, MP ;
LU, HA ;
JOHNSON, A ;
FALICOV, LM .
PHYSICAL REVIEW B, 1990, 41 (01) :460-489
[8]   Metal-insulator-like behavior in semimetallic bismuth and graphite [J].
Du, X ;
Tsai, SW ;
Maslov, DL ;
Hebard, AF .
PHYSICAL REVIEW LETTERS, 2005, 94 (16)
[9]   THEORY OF RESISTANCE OF RARE EARTH METALS [J].
ELLIOTT, RJ ;
WEDGWOOD, FA .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1963, 81 (523) :846-&
[10]   Energy dispersive x-ray diffraction of charge density waves via chemical filtering [J].
Feng, Y ;
Somayazulu, MS ;
Jaramillo, R ;
Rosenbaum, TF ;
Isaacs, ED ;
Hu, JZ ;
Mao, HK .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (06)