Multiple-Reflection Noise Attenuation Using Adaptive Randomized-Order Empirical Mode Decomposition

被引:103
作者
Chen, Wei [1 ,2 ]
Xie, Jianyong [3 ,4 ]
Zu, Shaohuan [3 ]
Gan, Shuwei [3 ]
Chen, Yangkang [5 ,6 ]
机构
[1] Yangtze Univ, Minist Educ, Key Lab Explorat Technol Oil & Gas Resources, Wuhan 430100, Peoples R China
[2] Hubei Cooperat Innovat Ctr Unconvent Oil & Gas, Wuhan 430100, Peoples R China
[3] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102200, Peoples R China
[4] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada
[5] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78713 USA
[6] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA
关键词
Adaptive algorithm; empirical mode decomposition (EMD); multiple reflections noise attenuation; randomized-order EMD; VELOCITY ANALYSIS; SEISLET TRANSFORM; SUBTRACTION; DOMAIN; SERIES;
D O I
10.1109/LGRS.2016.2622918
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose a novel approach for removing noise from multiple reflections based on an adaptive randomized-order empirical mode decomposition (EMD) framework. We first flatten the primary reflections in common midpoint gather using the automatically picked normal moveout velocities that correspond to the primary reflections and then randomly permutate all the traces. Next, we remove the spatially distributed random spikes that correspond to the multiple reflections using the EMD-based smoothing approach that is implemented in the f-x domain. The trace randomization approach can make the spatially coherent multiple reflections random along the space direction and can decrease the coherency of near-offset multiple reflections. The EMD-based smoothing method is superior to median filter and prediction error filter in that it can help preserve the flattened signals better, without the need of exact flattening, and can preserve the amplitude variation much better. In addition, EMD is a fully adaptive algorithm and the parameterization for EMD-based smoothing can be very convenient.
引用
收藏
页码:18 / 22
页数:5
相关论文
共 37 条
[1]   A fast, modified parabolic Radon transform [J].
Abbad, Brahim ;
Ursin, Bjorn ;
Porsani, Milton J. .
GEOPHYSICS, 2011, 76 (01) :V11-V24
[2]   LATERAL PREDICTION FOR NOISE ATTENUATION BY T-X AND F-X TECHNIQUES [J].
ABMA, R ;
CLAERBOUT, J .
GEOPHYSICS, 1995, 60 (06) :1887-1896
[3]  
Carvalho FM, 1992, DISSERTATION
[4]   Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter [J].
Chen, Yangkang .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 206 (01) :457-469
[5]   Random noise attenuation using local signal-and-noise orthogonalization [J].
Chen, Yangkang ;
Fomel, Sergey .
GEOPHYSICS, 2015, 80 (06) :WD1-WD9
[6]   Ground-Roll Noise Attenuation Using a Simple and Effective Approach Based on Local Band-Limited Orthogonalization [J].
Chen, Yangkang ;
Jiao, Shebao ;
Ma, Jianwei ;
Chen, Hanming ;
Zhou, Yatong ;
Gan, Shuwei .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (11) :2316-2320
[7]   Velocity analysis using similarity-weighted semblance [J].
Chen, Yangkang ;
Liu, Tingting ;
Chen, Xiaohong .
GEOPHYSICS, 2015, 80 (04) :A75-A82
[8]   Enhancing seismic reflections using empirical mode decomposition in the flattened domain [J].
Chen, Yangkang ;
Zhang, Guoyin ;
Gan, Shuwei ;
Zhang, Chenglin .
JOURNAL OF APPLIED GEOPHYSICS, 2015, 119 :99-105
[9]  
Chen YK, 2014, J SEISM EXPLOR, V23, P481
[10]   Random noise attenuation by f-x empirical-mode decomposition predictive filtering [J].
Chen, Yangkang ;
Ma, Jitao .
GEOPHYSICS, 2014, 79 (03) :V81-V91