Logarithmic bump conditions and the two-weight boundedness of Calderon-Zygmund operators

被引:27
作者
Cruz-Uribe, David [1 ]
Reznikov, Alexander [2 ]
Volberg, Alexander [2 ]
机构
[1] Trinity Coll, Dept Math, Hartford, CT USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Calderon-Zygmund operators; Carleson embedding theorem; Bellman function; Stopping time; Bump conditions; Orlicz norms; NORM INEQUALITIES; HILBERT TRANSFORM; SHARP; 2-WEIGHT; INTEGRALS;
D O I
10.1016/j.aim.2014.01.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if a pair of weights (u, v) satisfies a sharp A(p)-bump condition in the scale of all log bumps or certain loglog bumps, then Haar shifts map L-p(v) into L-p(u) with a constant quadratic in the complexity of the shift. This in turn implies the two weight boundedness for all Calderon-Zygmund operators. This gives a partial answer to a long-standing conjecture. We also give a partial result for a related conjecture for weak-type inequalities. To prove our main results we combine several different approaches to these problems; in particular we use many of the ideas developed to prove the A(2) conjecture. As a byproduct of our work we also disprove a conjecture by Muckenhoupt and Wheeden on weak-type inequalities for the Hilbert transform. This is closely related to the recent counterexamples of Reguera, Scurry and Thiele. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:706 / 729
页数:24
相关论文
共 42 条
[11]  
Hytonen T., ARXIV10100755V2
[12]  
Hytonen T., ARXIV11085119V1
[13]  
Hytonen T., ARXIV11064797V1
[14]  
Hytonen T., ARXIV11035229
[15]   The sharp weighted bound for general Calderon-Zygmund operators [J].
Hytonen, Tuomas P. .
ANNALS OF MATHEMATICS, 2012, 175 (03) :1473-1506
[16]  
Lacey M., ARXIV13103507
[17]   Sharp A2 inequality for Haar shift operators [J].
Lacey, Michael T. ;
Petermichl, Stefanie ;
Reguera, Maria Carmen .
MATHEMATISCHE ANNALEN, 2010, 348 (01) :127-141
[18]  
Lerner A., ARXIV12021860
[19]   A pointwise estimate for the local sharp maximal function with applications to singular integrals [J].
Lerner, Andrei K. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2010, 42 :843-856
[20]  
Moraes J., ARXIV11083109