Density Functional Theory-Based Quantum Mechanics/Coarse-Grained Molecular Mechanics: Theory and Implementation

被引:13
作者
Mironenko, Alexander V. [1 ,2 ]
Voth, Gregory A. [1 ,2 ]
机构
[1] Univ Chicago, James Franck Inst, Dept Chem, Chicago Ctr Theoret Chem, Chicago, IL 60637 USA
[2] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
FORCE-FIELD; FREE-ENERGY; QM/MM METHODS; DYNAMICS; EFFICIENT; SIMULATIONS; TRANSPORT; KINETICS; COMPLEX; MODEL;
D O I
10.1021/acs.jctc.0c00751
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quantum mechanics/molecular mechanics (QM/MM) is a standard computational tool for describing chemical reactivity in systems with many degrees of freedom, including polymers, enzymes, and reacting molecules in complex solvents. However, QM/MM is less suitable for systems with complex MM dynamics due to associated long relaxation times, the high computational cost of QM energy evaluations, and expensive long-range electrostatics. Recently, a systematic coarse graining of the MM part was proposed to overcome these QM/MM limitations in the form of the quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM) approach. Herein, we recast QM/CG-MM in the density functional theory formalism and, by employing the force-matching variational principle, assess the method performance for the two model systems: QM CCl4 in the MM CCl4 liquid and the reaction of tert-butyl hypochlorite with the benzyl radical in the MM CCl4 solvent. We find that density functional theory (DFT)-QM/CG-MM accurately reproduces DFT-QM/MM radial distribution functions and three-body correlations between the QM and CG-MM subsystems. The free-energy profile of the reaction is also described well, with an error <1-2 kcal/mol. DFT-QM/CG-MM is a general, systematic, and computationally efficient approach to include chemical reactivity in coarse-grained molecular models.
引用
收藏
页码:6329 / 6342
页数:14
相关论文
共 86 条
[1]   Protons and Hydroxide Ions in Aqueous Systems [J].
Agmon, Noam ;
Bakker, Huib J. ;
Campen, R. Kramer ;
Henchman, Richard H. ;
Pohl, Peter ;
Roke, Sylvie ;
Thaemer, Martin ;
Hassanali, Ali .
CHEMICAL REVIEWS, 2016, 116 (13) :7642-7672
[2]  
Albright TA, 2013, ORBITAL INTERACTIONS IN CHEMISTRY, 2ND EDITION, P1, DOI 10.1002/9781118558409
[3]   Impact of Gold Nanoparticle Stabilizing Ligands on the Colloidal Catalytic Reduction of 4-Nitrophenol [J].
Ansar, Siyam M. ;
Kitchens, Christopher L. .
ACS CATALYSIS, 2016, 6 (08) :5553-5560
[4]   QM/MM Study of the Nitrogenase MoFe Protein Resting State: Broken-Symmetry States, Protonation States, and QM Region Convergence in the FeMoco Active Site [J].
Benediktsson, Bardi ;
Bjornsson, Ragnar .
INORGANIC CHEMISTRY, 2017, 56 (21) :13417-13429
[5]   Systematic coarse-graining methods for soft matter simulations - a review [J].
Brini, Emiliano ;
Algaer, Elena A. ;
Ganguly, Pritam ;
Li, Chunli ;
Rodriguez-Ropero, Francisco ;
van der Vegt, Nico F. A. .
SOFT MATTER, 2013, 9 (07) :2108-2119
[6]  
Broyden C.G., 1970, IMA Journal of Applied Mathematics, V6, P76, DOI [10.1093/imamat/6.1.76, 10.1093/IMAMAT/6.1.76]
[7]   Covalent radii revisited [J].
Cordero, Beatriz ;
Gomez, Veronica ;
Platero-Prats, Ana E. ;
Reves, Marc ;
Echeverria, Jorge ;
Cremades, Eduard ;
Barragan, Flavia ;
Alvarez, Santiago .
DALTON TRANSACTIONS, 2008, (21) :2832-2838
[8]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[9]   A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method [J].
Cui, Q ;
Elstner, M ;
Kaxiras, E ;
Frauenheim, T ;
Karplus, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (02) :569-585
[10]   Reactive Coarse-Grained Molecular Dynamics [J].
Dannenhoffer-Lafage, Thomas ;
Voth, Gregory A. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (04) :2541-2549