Fuzzy Logic Control of a Battery Energy Storage System for Stability Improvement in an Islanded Microgrid

被引:14
作者
Tephiruk, Naowarat [1 ]
Kanokbannakorn, Weerawoot [1 ]
Kerdphol, Thongchart [2 ]
Mitani, Yasunori [2 ]
Hongesombut, Komsan [1 ]
机构
[1] Kasetsart Univ, Fac Engn, Dept Elect Engn, Bangkok 10900, Thailand
[2] Kyushu Inst Technol, Dept Elect & Elect Engn, Kitakyushu, Fukuoka 8048550, Japan
关键词
frequency stability; voltage stability; battery energy storage system; microgrid; fuzzy logic control; robust control;
D O I
10.3390/su10051645
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, the active and reactive power control of a battery energy storage system (BESS) using fuzzy logic control to maintain the voltage and frequency stability of the islanded Mae Sariang microgrid is presented. The main scope of the presented study is to cogitate the effectiveness of the BESS controller in view of fluctuations of frequency/voltage subjected to a disturbance occurring in the islanded microgrid. In the Mae Sariang microgrid system, the electricity is produced from two renewable energy resources (RESs), i.e., hydro and solar PV. The use of these clean energy sources has become a main problem, envisaging the output power uncertainties from RESs. Further, such power uncertainty raises power quality problems and leads to power failure. To overcome such problems, the proposed fuzzy logic control (FLC) approach is applied for the BESS controller to improve the stability of the islanded Mae Sariang microgrid. The proposed FLC is intended to provide the BESS with well-established attributes of dynamical response to disturbance, which is analyzed by a predictive model. The proposed FLC has been investigated and compared with the robust control method, which is analyzed by a mathematical model using the system identification technique. The modeling of the microgrid system with BESS is implemented and verified on the DIgSILENT PowerFactory software. The simulation result illustrates that both of the control approaches allow the dynamic stability of the microgrid and the maintenance of frequency and voltage within acceptable ranges. However, the proposed BESS fuzzy logic control is less prone to uncertainty than the BESS robust control. Furthermore, in the proposed BESS fuzzy logic control, the microgrid frequency and voltage rapidly return to their normal steady-state condition and the size of the BESS is smaller than the BESS robust control.
引用
收藏
页数:16
相关论文
共 25 条
[1]   Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System [J].
Alajmi, Bader N. ;
Ahmed, Khaled H. ;
Finney, Stephen J. ;
Williams, Barry W. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2011, 26 (04) :1022-1030
[2]   A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid [J].
Basak, Prasenjit ;
Chowdhury, S. ;
Dey, S. Haider Nee ;
Chowdhury, S. P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (08) :5545-5556
[3]   A Novel Soft-Switching Multiport Bidirectional DC-DC Converter for Hybrid Energy Storage System [J].
Ding, Zhihui ;
Yang, Chen ;
Zhang, Zhao ;
Wang, Cheng ;
Xie, Shaojun .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2014, 29 (04) :1595-1609
[4]   Comparison of Sliding Mode and PI Control of a Hybrid Energy Storage System in a Microgrid Application [J].
Etxeberria, A. ;
Vechiu, I. ;
Camblong, H. ;
Vinassa, J. -M. .
PROCEEDINGS OF INTERNATIONAL CONFERENCE ON SMART GRID AND CLEAN ENERGY TECHNOLOGIES (ICSGCE 2011), 2011, 12
[5]   Lithium-Ion Battery Storage for the Grid-A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids [J].
Hesse, Holger C. ;
Schimpe, Michael ;
Kucevic, Daniel ;
Jossen, Andreas .
ENERGIES, 2017, 10 (12)
[6]   Analyzing the Need for a Balancing System in Supercapacitor Energy Storage Systems [J].
Ibanez, Federico Martin .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2018, 33 (03) :2162-2171
[7]   Control of a Supercapacitor Energy Storage System for Microgrid Applications [J].
Inthamoussou, Fernando A. ;
Pegueroles-Queralt, Jordi ;
Bianchi, Fernando D. .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2013, 28 (03) :690-697
[8]  
ITHIAM W, 2015, J ENERGY ENV, V26, P23
[9]   Decentralized Method for Load Sharing and Power Management in a PV/Battery Hybrid Source Islanded Microgrid [J].
Karimi, Yaser ;
Oraee, Hashem ;
Golsorkhi, Mohammad S. ;
Guerrero, Josep M. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2017, 32 (05) :3525-3535
[10]  
Katiraei F., 2015, IEEE T POWER DELIVER, V20, P248