Finite element method with Lagrange multipliers for contact problems with friction

被引:42
作者
Baillet, L
Sassi, T
机构
[1] Inst Natl Sci Appl, UMR 5514, Lab Mecan Contacts, F-69621 Villeurbanne, France
[2] Inst Natl Sci Appl, UMR 5514, Lab Math Appl Lyon, F-69621 Villeurbanne, France
关键词
D O I
10.1016/S1631-073X(02)02356-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note, we propose a finite element method with Lagrange multipliers in order to approximate contact problems with friction. The discretized normal and tangential constraints at the candidate contact interface are expressed by using continuous piecewise linear Lagrange multipliers in the saddle-point formulation. An optimal error estimate is established and several numerical studies corresponding to this choice of the discretized normal and tangential constraints are achieved. (C) 2002 Academie des science/Edition scientifiques et medicales Elsevier SAS.
引用
收藏
页码:917 / 922
页数:6
相关论文
共 10 条
  • [1] AGOUZAL A, 1995, RAIRO-MATH MODEL NUM, V29, P749
  • [2] BAILLET L, 2001, 3 CONT MEC INT S CMI
  • [3] BAILLET L, MIXED FINITE ELEMENT
  • [4] About the mortar finite element method for non-local Coulomb law in contact problems
    Bayada, G
    Chambat, M
    Lhalouani, K
    Sassi, T
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (12): : 1323 - 1328
  • [5] CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
  • [6] Coorevits P, 2002, MATH COMPUT, V71, P1, DOI 10.1090/S0025-5718-01-01318-7
  • [7] Duvaut G., 1972, INEQUATIONS MECANIQU
  • [8] APPROXIMATION OF THE SIGNORINI PROBLEM WITH FRICTION BY A MIXED FINITE-ELEMENT METHOD
    HASLINGER, J
    HLAVACEK, I
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 86 (01) : 99 - 122
  • [9] HASLINGER J, 1996, HDB NUMERICAL ANAL 2, V4
  • [10] HILD P, 1997, C R ACAD SCI PARIS 1, P707