Intersection numbers on moduli spaces and symmetries of a Verlinde formula

被引:6
作者
Herrera, R
Salamon, S
机构
[1] Mathematical Institute, Oxford OX1 3LB
关键词
D O I
10.1007/s002200050177
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the geometry and topology of a standard moduli space of stable bundles on a Riemann surface, and use a generalization of the Verlinde formula to derive results on intersection pairings.
引用
收藏
页码:521 / 534
页数:14
相关论文
共 28 条
[1]  
[Anonymous], 1992, J AM MATH SOC, DOI DOI 10.2307/2152712
[2]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[3]  
Baranovsky V., 1994, IZV RUSS ACAD NAUK, V58, P204
[4]   CONFORMAL BLOCKS AND GENERALIZED THETA-FUNCTIONS [J].
BEAUVILLE, A ;
LASZLO, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 164 (02) :385-419
[5]   HILBERT POLYNOMIALS OF MODULI SPACES OF RANK-2 - VECTOR BUNDLES-II [J].
BERTRAM, A ;
SZENES, A .
TOPOLOGY, 1993, 32 (03) :599-609
[6]   LIE-GROUPS AND TWISTOR SPACES [J].
BRYANT, RL .
DUKE MATHEMATICAL JOURNAL, 1985, 52 (01) :223-261
[7]   CLASSIFICATION OF VECTOR BUNDLES OF RANK 2 ON HYPERELLIPTIC CURVES [J].
DESALE, UV ;
RAMANAN, S .
INVENTIONES MATHEMATICAE, 1976, 38 (02) :161-185
[8]  
Donaldson S K, 1993, Topological methods in modern mathematics, P137
[9]  
Faltings G., 1994, J. Algebraic Geom., V3, P347
[10]  
GIESEKER D, 1984, J DIFFER GEOM, V19, P173