On the boomerang uniformity of a class of permutation quadrinomials over finite fields

被引:4
作者
Wu, Yanan [1 ]
Wang, Lisha [1 ]
Li, Nian [1 ]
Zeng, Xiangyong [1 ]
Tang, Xiaohu [1 ,2 ]
机构
[1] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
[2] Southwest Jiaotong Univ, CSNMT Int Coo Res Ctr MoST, Informat Coding & Transmiss Key Lab Sichuan Prov, Chengdu 611756, Peoples R China
基金
中国国家自然科学基金;
关键词
Permutation polynomial; Differential uniformity; Boomerang uniformity;
D O I
10.1016/j.disc.2022.113000
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-2n be a finite field with 2n elements and f(subset of)(x) = c(0)x(2m(2k+1)) + c(1)x(2m+k+1) + c(2)x(2m+2k) + c(3)x(2k+1) & ISIN; F-2n [x], where n, m and k are positive integers with n = 2m and gcd(m, k) = e. In this paper, motivated by a recent work of Li, Xiong and Zeng (Li et al. (2021) [12]), we further study the boomerang uniformity of f(subset of)(x) by using similar ideas and carrying out particular techniques in solving equations over finite fields. As a consequence, we general-ize Li, Xiong and Zeng's result from the case of m being odd and e =1 to that of both m/e and k/e being odd. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 21 条
  • [1] On the Boomerang Uniformity of Cryptographic Sboxes
    Boura, Christina
    Canteaut, Anne
    [J]. IACR TRANSACTIONS ON SYMMETRIC CRYPTOLOGY, 2018, 2018 (03) : 290 - 310
  • [2] Binomial differentially 4 uniform permutations with high nonlinearity
    Bracken, Carl
    Tan, Chik How
    Tan, Yin
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (03) : 537 - 546
  • [3] A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree
    Bracken, Carl
    Leander, Gregor
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2010, 16 (04) : 231 - 242
  • [4] Browning KA, 2010, CONTEMP MATH, V518, P33
  • [5] Boomerang Connectivity Table: A New Cryptanalysis Tool
    Cid, Carlos
    Huang, Tao
    Peyrin, Thomas
    Sasaki, Yu
    Song, Ling
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2018, PT II, 2018, 10821 : 683 - 713
  • [6] Ding ZG, 2022, Arxiv, DOI arXiv:2203.04216
  • [7] Fu SH, 2017, IACR T SYMMETRIC CRY, V2017, P228, DOI 10.13154/tosc.v2017.i2.228-249
  • [8] Cryptographically strong permutations from the butterfly structure
    Li, Kangquan
    Li, Chunlei
    Helleseth, Tor
    Qu, Longjiang
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (04) : 737 - 761
  • [9] New Results About the Boomerang Uniformity of Permutation Polynomials
    Li, Kangquan
    Qu, Longjiang
    Sun, Bing
    Li, Chao
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (11) : 7542 - 7553
  • [10] Li N, 2020, Arxiv, DOI arXiv:2001.00464