A non-local perturbation of the logistic equation in RN

被引:3
作者
Delgado, M. [1 ]
Molina-Becerra, M. [2 ]
Santos, J. R., Jr. [3 ]
Suarez, A. [1 ]
机构
[1] Univ Seville, Fac Matemat, Dept Ecuac Diferenciales & Anal Numer, Seville, Spain
[2] Univ Seville, Dept Matemat Aplicada 2, Esc Politecn Super, Seville, Spain
[3] Univ Fed Para, Fac Matemat, Belem, Para, Brazil
关键词
Non-local term; Logistic equation; Sub-supersolution method;
D O I
10.1016/j.na.2019.04.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A logistic equation in the whole space is considered. In this problem, a non-local perturbation is included. We establish a new sub-supersolution method for general nonlocal elliptic equations and, consequently, we obtain the existence of positive solutions of a nonlocal logistic equation. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:147 / 158
页数:12
相关论文
共 15 条
  • [1] On bounded positive stationary solutions for a nonlocal Fisher-KPP equation
    Achleitner, Franz
    Kuehn, Christian
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 112 : 15 - 29
  • [2] On a diffusive logistic equation
    Afrouzi, GA
    Brown, KJ
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 225 (01) : 326 - 339
  • [3] AKO K, 1964, J FAC SCI U TOKYO 1, V11, P29
  • [4] EXISTENCE OF A SOLUTION FOR A NON-LOCAL PROBLEM IN RN VIA BIFURCATION THEORY
    Alves, Claudianor O.
    de Lima, Romildo N.
    Souto, Marco A. S.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2018, 61 (03) : 825 - 845
  • [5] Propagation in a non local reaction diffusion equation with spatial and genetic trait structure
    Berestycki, Henri
    Jin, Tianling
    Silvestre, Luis
    [J]. NONLINEARITY, 2016, 29 (04) : 1434 - 1466
  • [6] The non-local Fisher-KPP equation: travelling waves and steady states
    Berestycki, Henri
    Nadin, Gregoire
    Perthame, Benoit
    Ryzhik, Lenya
    [J]. NONLINEARITY, 2009, 22 (12) : 2813 - 2844
  • [7] Global stability for a nonlocal reaction-diffusion population model
    Deng, Keng
    Wu, Yixiang
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 25 : 127 - 136
  • [8] Logistic type equations on RN by a squeezing method involving boundary blow-up solutions
    Du, YH
    Ma, L
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 : 107 - 124
  • [9] Remarks on the uniqueness problem for the logistic equation on the entire space
    Du, YH
    Liu, LS
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 73 (01) : 129 - 137
  • [10] Positive solutions of an elliptic partial differential equation on RN
    Du, YH
    Ma, L
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 271 (02) : 409 - 425