A comparison of parametric and nonparametric approaches to item analysis for multiple-choice tests

被引:7
|
作者
Lei, PW [1 ]
Dunbar, SB [1 ]
Kolen, MJ [1 ]
机构
[1] Penn State Univ, Dept Educ & Sch Psychol & Special Educ, University Pk, PA 16802 USA
关键词
item analysis; multiple-choice tests; polytomous item response theory; parametric and nonparametric models;
D O I
10.1177/0013164403261760
中图分类号
G44 [教育心理学];
学科分类号
0402 ; 040202 ;
摘要
This study compares the parametric multiple-choice model and the nonparametric kernel smoothing approach to estimating option characteristic functions (OCCs) using an empirical criterion, the stability of curve estimates over occasions that represents random error. The potential utility of graphical OCCs in item analysis was illustrated with selected items. The effect of increasing the smoothing parameter on the nonparametric model and the effect of small sample on both approaches were investigated. Differences between estimated curve values for between-model within-occasion, within-model between-occasion, and between-model between-occasion were evaluated. The between-model differences were minor in relation to the within-model stabilities, and the incremental difference attributable to model was smaller than that attributable to occasion. Either model leads to the same choice in item analysis.
引用
收藏
页码:565 / 587
页数:23
相关论文
共 50 条