Resonant and quasi-resonant excitation of baroclinic waves in the Eady model

被引:9
作者
Kalashnik, M. V. [1 ,2 ,3 ]
机构
[1] Russian Acad Sci, Obukhov Inst Atmospher Phys, Moscow 109017, Russia
[2] Res & Prod Assoc Typhoon, Obninsk 249038, Kaluga Oblast, Russia
[3] Obninsk Res Nucl Univ, Moscow Engn & Phys Inst MEPhI, Obninsk 240040, Kaluga Oblast, Russia
基金
俄罗斯科学基金会;
关键词
baroclinic waves; shear flow; Eady model; resonance; potential vorticity; cyclones; anticyclones; LINEAR DYNAMICS; DISTURBANCES; GENERATION;
D O I
10.1134/S0001433815060080
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The structure of baroclinic waves in a geostrophic flow with a constant vertical shear (Eady model) is very consistent with that of atmospheric vortex formations. This paper proposes an approach to describing the generation of these waves by initial perturbations of potential vorticity (PV). Within the framework of the suggested approach, the solution to the initial-value problem for a quasi-geostrophic form of the PV transfer equation is represented as a sum of the wave and vortex components with zero and nonzero PV, respectively. A set of ordinary differential equations with the right-hand side dependent on the vertical PV distribution is formulated using Green functions for the amplitude of the wave component (amplitude of excited baroclinic waves). The solution provides a simple description of the resonant and quasi-resonant baroclinic-wave excitation effects under which the wave amplitude grows according to the linear or logarithmic laws. These types of excitation take place for singular and discontinuous initial PV distributions if the frequencies of the wave and vortex components coincide. Smooth distributions generate finite-amplitude waves.
引用
收藏
页码:576 / 584
页数:9
相关论文
共 27 条
[1]  
[Anonymous], 1982, ATMOSPHERE OCEAN DYN
[2]  
Badger J, 2001, J ATMOS SCI, V58, P38, DOI 10.1175/1520-0469(2001)058<0038:SIVPAM>2.0.CO
[3]  
2
[4]  
CHANG EKM, 1992, J ATMOS SCI, V49, P2452, DOI 10.1175/1520-0469(1992)049<2452:RNMOTE>2.0.CO
[5]  
2
[6]  
DAVIES HC, 1994, J ATMOS SCI, V51, P1930, DOI 10.1175/1520-0469(1994)051<1930:EEWARD>2.0.CO
[7]  
2
[8]   Resonance in optimal perturbation evolution. Part II: Effects of a nonzero mean PV gradient [J].
de Vries, H. ;
Opsteegh, J. D. .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2007, 64 (03) :695-710
[9]   An Interpretation of Baroclinic Initial Value Problems: Results for Simple Basic States with Nonzero Interior PV Gradients [J].
de Vries, Hylke ;
Methven, John ;
Frame, Thomas H. A. ;
Hoskins, Brian J. .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2009, 66 (04) :864-882
[10]  
EADY ET, 1949, TELLUS, V1, P33