Homoclinic solutions of an infinite-dimensional Hamiltonian system

被引:68
作者
Bartsch, T
Ding, YH
机构
[1] Univ Giessen, Math Inst, D-35392 Giessen, Germany
[2] Chinese Acad Sci, Inst Math, Beijing 100080, Peoples R China
关键词
D O I
10.1007/s002090100383
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the system [GRAPHICS] which is an unbounded Hamiltonian system in L-2 (R-N, R-2M). We assume that the constant function (u(o), v(0)) equivalent to (0, 0) is an element of R-2M is a stationary solution, and that H and V are periodic in the t and x variables. We present a variational formulation in order to obtain homoclinic solutions z = (U, V) satisfying z (t, x) --> 0 as \t\ + \x\ --> infinity. It is allowed that V changes sign and that -Delta + V has essential spectrum below (and above) 0. We also treat the case of a bounded domain Omega instead of R-N with Dirichlet boundary conditions.
引用
收藏
页码:289 / 310
页数:22
相关论文
共 27 条
[21]   EXISTENCE OF INFINITELY MANY HOMOCLINIC ORBITS IN HAMILTONIAN-SYSTEMS [J].
SERE, E .
MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (01) :27-42
[22]  
SERE E, 1993, ANN I H POINCARE-AN, V10, P561
[24]   HOMOCLINIC ORBITS IN A 1ST ORDER SUPERQUADRATIC HAMILTONIAN SYSTEM - CONVERGENCE OF SUBHARMONIC ORBITS [J].
TANAKA, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 94 (02) :315-339
[25]  
Triebel H., 1978, Interpolation theory, function spaces, differential operators
[26]  
ZELATI VC, 1992, COMMUN PUR APPL MATH, V45, P1217
[27]   A VARIATIONAL APPROACH TO HOMOCLINIC ORBITS IN HAMILTONIAN-SYSTEMS [J].
ZELATI, VC ;
EKELAND, I ;
SERE, E .
MATHEMATISCHE ANNALEN, 1990, 288 (01) :133-160