Homoclinic solutions of an infinite-dimensional Hamiltonian system

被引:68
作者
Bartsch, T
Ding, YH
机构
[1] Univ Giessen, Math Inst, D-35392 Giessen, Germany
[2] Chinese Acad Sci, Inst Math, Beijing 100080, Peoples R China
关键词
D O I
10.1007/s002090100383
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the system [GRAPHICS] which is an unbounded Hamiltonian system in L-2 (R-N, R-2M). We assume that the constant function (u(o), v(0)) equivalent to (0, 0) is an element of R-2M is a stationary solution, and that H and V are periodic in the t and x variables. We present a variational formulation in order to obtain homoclinic solutions z = (U, V) satisfying z (t, x) --> 0 as \t\ + \x\ --> infinity. It is allowed that V changes sign and that -Delta + V has essential spectrum below (and above) 0. We also treat the case of a bounded domain Omega instead of R-N with Dirichlet boundary conditions.
引用
收藏
页码:289 / 310
页数:22
相关论文
共 27 条
[1]   Variational perturbative methods and bifurcation of bound states from the essential spectrum [J].
Ambrosetti, A ;
Badiale, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :1131-1161
[2]   Homoclinics: Poincare-Melnikov type results via a variational approach [J].
Ambrosetti, A ;
Badiale, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (02) :233-252
[3]  
[Anonymous], 1978, METHODS MODERN MATH
[4]   Homoclinic solutions of Hamiltonian systems with symmetry [J].
Arioli, G ;
Szulkin, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 158 (02) :291-313
[5]  
Bartsch T, 1999, PROG NONLIN, V35, P51
[6]   On a nonlinear Schrodinger equation with periodic potential [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ANNALEN, 1999, 313 (01) :15-37
[7]   INFINITELY MANY SOLUTIONS OF A SYMMETRICAL DIRICHLET PROBLEM [J].
BARTSCH, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (10) :1205-1216
[8]  
Besov O.V., 1975, Integral representation of functions and the embedding theorem
[9]  
Brezis H., 1978, ANN SCUOLA NORM SUP, V5, P225
[10]  
Clement Ph., 1997, ANN SC NORM SUP PISA, VXXIV, P367