Numerical and experimental analysis of the power output of a point absorber wave energy converter in irregular waves

被引:33
作者
Rahmati, M. T. [1 ,2 ]
Aggidis, G. A. [2 ]
机构
[1] Brunel Univ London, Dept Mech Aerosp & Civil Engn, Uxbridge UB8 3PH, Middx, England
[2] Univ Lancaster, Dept Engn, Renewable Energy Grp, Fac Sci & Technol, Lancaster LA1 4YR, England
关键词
Wave energy converter; Point absorber; Irregular waves; Capture width ratio; BOUNDARY-ELEMENT METHOD; CAPTURE WIDTH; ABSORPTION; CONVERSION; DEVICE; PLANT;
D O I
10.1016/j.oceaneng.2015.11.011
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This paper examines the optimum power output of a pitching-surge point absorber wave energy converter in irregular wave climates. A mathematical model based on frequency domain is used as the first step to estimate the hydrodynamic parameters of the device and its potential power output in realistic sea waves. The numerical results predict that the point absorber energy converter has the potential to absorb more energy than what is contained in its own geometrical width. The optimum power of the device is then obtained from wave tank experiments in irregular wave climates. The comparison of numerical and experimental results demonstrates that the frequency domain method based on linear theory will lead to an overestimation of the energy absorption for this device. The frequency domain method provides an upper estimate for wave energy absorption due to the non-linear, viscous effects and constrained amplitude of device oscillation. However, comparison of the performance of the device with other point absorber wave energy converters shows that this wave energy converter is one of the most efficient in terms of absorbing wave energy. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:483 / 492
页数:10
相关论文
共 46 条
[1]  
Aggidis G.A., 2009, P 28 ASME INT C OC O
[2]  
[Anonymous], 2002, OCEAN WAVES OSCILLAT, DOI DOI 10.1017/CBO9780511754630
[3]  
ANSYS AQWA, 2010, ANSYS AQWA US MAN V1
[4]   A database of capture width ratio of wave energy converters [J].
Babarit, A. .
RENEWABLE ENERGY, 2015, 80 :610-628
[5]   Numerical benchmarking study of a selection of wave energy converters [J].
Babarit, A. ;
Hals, J. ;
Muliawan, M. J. ;
Kurniawan, A. ;
Moan, T. ;
Krokstad, J. .
RENEWABLE ENERGY, 2012, 41 :44-63
[6]  
Bhinder M.A., 2009, P 8 EUR WAV TID EN C
[7]   Numerical hydrodynamic modelling of a pitching wave energy converter [J].
Bhinder, Majid A. ;
Rahmati, M. T. ;
Mingham, C. G. ;
Aggidis, G. A. .
EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2015, 24 (04) :129-143
[8]   Potential time domain model with viscous correction and CFD analysis of a generic surging floating wave energy converter [J].
Bhinder, Majid A. ;
Babarit, Aurelien ;
Gentaz, Lionel ;
Ferrant, Pierre .
INTERNATIONAL JOURNAL OF MARINE ENERGY, 2015, 10 :70-96
[9]   Modeling of a Point Absorber for Energy Conversion in Italian Seas [J].
Bozzi, Silvia ;
Miquel, Adria Moreno ;
Antonini, Alessandro ;
Passoni, Giuseppe ;
Archetti, Renata .
ENERGIES, 2013, 6 (06) :3033-3051
[10]   RESONANT POINT ABSORBER OF OCEAN-WAVE POWER [J].
BUDAR, K ;
FALNES, J .
NATURE, 1975, 256 (5517) :478-479