Intraoperative Diagnosis Support Tool for Serous Ovarian Tumors Based on Microarray Data Using Multicategory Machine Learning

被引:9
|
作者
Park, Jee Soo [1 ,2 ]
Choi, Soo Beom [1 ,3 ]
Kim, Hee Jung [4 ]
Cho, Nam Hoon [5 ]
Kim, Sang Wun [4 ]
Kim, Young Tae [4 ]
Nam, Eun Ji [4 ]
Chung, Jai Won [1 ,3 ]
Kim, Deok Won [1 ,3 ]
机构
[1] Yonsei Univ, Coll Med, Dept Med Engn, Seoul 120752, South Korea
[2] Yonsei Univ, Coll Med, Dept Med, Seoul 120752, South Korea
[3] Yonsei Univ, Grad Program Biomed Engn, Seoul 120752, South Korea
[4] Yonsei Univ, Coll Med, Dept Obstet & Gynecol, Seoul 120752, South Korea
[5] Yonsei Univ, Coll Med, Dept Pathol, Seoul 120752, South Korea
基金
新加坡国家研究基金会;
关键词
Ovarian tumor; Microarray analysis; Artificial intelligence; Multicategory classification; Borderline tumor; GENE SELECTION; BORDERLINE TUMORS; MOLECULAR CLASSIFICATION; LOW-GRADE; CANCER; CARCINOMAS; PREDICTION; PATTERNS; FROZEN;
D O I
10.1097/IGC.0000000000000566
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objectives Serous borderline ovarian tumors (SBOTs) are a subtype of serous ovarian carcinoma with atypical proliferation. Frozen-section diagnosis has been used as an intraoperative diagnosis tool in supporting the fertility-sparing surgery by diagnosing SBOTs with accuracy of 48% to 79%. Using DNA microarray technology, we designed multicategory classification models to support frozen-section diagnosis within 30 minutes. Materials and Methods We systematically evaluated 6 machine learning algorithms and 3 feature selection methods using 5-fold cross-validation and a grid search on microarray data obtained from the National Center for Biotechnology Information. To validate the models and selected biomarkers, expression profiles were analyzed in tissue samples obtained from the Yonsei University College of Medicine. Results The best accuracy of the optimal machine learning model was 97.3%. In addition, 5 features, including the expression of the putative biomarkers SNTN and AOX1, were selected to differentiate between normal, SBOT, and serous ovarian carcinoma groups. Different expression levels of SNTN and AOX1 were validated by real-time quantitative reverse-transcription polymerase chain reaction, Western blotting, and immunohistochemistry. A multinomial logistic regression model using SNTN and AOX1 alone was used to construct a simple-to-use equation that gave a diagnostic test accuracy of 91.9%. Conclusions We identified 2 biomarkers, SNTN and AOX1, that are likely involved in the pathogenesis and progression of ovarian tumors. An accurate diagnosis of ovarian tumor subclasses by application of the equation in conjunction with expression analysis of SNTN and AOX1 would offer a new accurate diagnosis tool in conjunction with frozen-section diagnosis within 30 minutes.
引用
收藏
页码:104 / 113
页数:10
相关论文
共 50 条
  • [21] Tool Wear Classification Based on Support Vector Machine and Deep Learning Models
    Hung, Yung-Hsiang
    Huang, Mei-Ling
    Wang, Wen-Pai
    Hsieh, Hsiao-Dan
    SENSORS AND MATERIALS, 2024, 36 (11) : 4815 - 4833
  • [22] Gene selection and classification for cancer microarray data based on machine learning and similarity measures
    Liu, Qingzhong
    Sung, Andrew H.
    Chen, Zhongxue
    Liu, Jianzhong
    Chen, Lei
    Qiao, Mengyu
    Wang, Zhaohui
    Huang, Xudong
    Deng, Youping
    BMC GENOMICS, 2011, 12
  • [23] Gene selection and classification for cancer microarray data based on machine learning and similarity measures
    Qingzhong Liu
    Andrew H Sung
    Zhongxue Chen
    Jianzhong Liu
    Lei Chen
    Mengyu Qiao
    Zhaohui Wang
    Xudong Huang
    Youping Deng
    BMC Genomics, 12
  • [24] A Machine Learning Approach for Early Diagnosis of Cognitive Impairment Using Population-Based Data
    Tan, Wei Ying
    Hargreaves, Carol
    Chen, Christopher
    Hilal, Saima
    JOURNAL OF ALZHEIMERS DISEASE, 2023, 91 (01) : 449 - 461
  • [25] Multiclass cancer diagnosis in microarray gene expression profile using mutual information and Support Vector Machine
    Vanitha, C. Devi Arockia
    Devaraj, D.
    Venkatesulu, M.
    INTELLIGENT DATA ANALYSIS, 2016, 20 (06) : 1425 - 1439
  • [26] Identifying New Potential Biomarkers in Adrenocortical Tumors Based on mRNA Expression Data Using Machine Learning
    Marquardt, Andre
    Landwehr, Laura-Sophie
    Ronchi, Cristina L.
    di Dalmazi, Guido
    Riester, Anna
    Kollmannsberger, Philip
    Altieri, Barbara
    Fassnacht, Martin
    Sbiera, Silviu
    CANCERS, 2021, 13 (18)
  • [27] Gene Expression Data Classification using Support Vector Machine and Mutual Information-based Gene Selection
    Vanitha, Devi Arockia C.
    Devaraj, D.
    Venkatesulu, M.
    GRAPH ALGORITHMS, HIGH PERFORMANCE IMPLEMENTATIONS AND ITS APPLICATIONS (ICGHIA 2014), 2015, 47 : 13 - 21
  • [28] Diagnosis of coronary artery disease based on machine learning algorithms support vector machine, artificial neural network, and random forest
    Saeedbakhsh, Saeed
    Sattari, Mohammad
    Mohammadi, Maryam
    Najafian, Jamshid
    Mohammadi, Farzaneh
    ADVANCED BIOMEDICAL RESEARCH, 2023, 12 (01): : 51
  • [29] Prediction and diagnosis of depression using machine learning with electronic health records data: a systematic review
    Nickson, David
    Meyer, Caroline
    Walasek, Lukasz
    Toro, Carla
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [30] Prediction and diagnosis of depression using machine learning with electronic health records data: a systematic review
    David Nickson
    Caroline Meyer
    Lukasz Walasek
    Carla Toro
    BMC Medical Informatics and Decision Making, 23