Textual entailment recognition based on dependency analysis and WordNet

被引:0
作者
Herrera, Jesus [1 ]
Penas, Anselmo [1 ]
Verdejo, Felisa [1 ]
机构
[1] Univ Nacl Educ Distancia, Dept Lenguajes & Sist Informat, E-28040 Madrid, Spain
来源
MACHINE LEARNING CHALLENGES: EVALUATING PREDICTIVE UNCERTAINTY VISUAL OBJECT CLASSIFICATION AND RECOGNIZING TEXTUAL ENTAILMENT | 2006年 / 3944卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Recognizing Textual Entailment System shown here is based on the use of a broad-coverage parser to extract dependency relationships; in addition, WordNet relations are used to recognize entailment at the lexical level. The work investigates whether the mapping of dependency trees from text and hypothesis give better evidence of entailment than the matching of plain text alone. While the use of WordNet seems to improve system's performance, the notion of mapping between trees here explored (inclusion) shows no improvement, suggesting that other notions of tree mappings should be explored such as tree edit distances or tree alignment distances.
引用
收藏
页码:231 / 239
页数:9
相关论文
共 13 条
  • [1] BARZILAY R, 2003, NACCL HLT
  • [2] BILLE P, 2003, IT TECHNICAL REPORT
  • [3] Dagan Ido., 2005, P PASCAL RECOGNISING, P1
  • [4] GUSFIELD R, 1997, ALGORITMS STRINGS TR
  • [5] HERMJAKOB U, 2002, P TREC
  • [6] KILPELAINEN P, 1992, A19926 U HELS DEP SC
  • [7] Kouylekov M., 2006, PASCAL CHALLENGES RT, P17
  • [8] Levenshtein V.I., 1966, SOV PHYS DOKL, V10, DOI DOI 10.1109/TVCG.2012.323
  • [9] Lin D., 1998, WORKSH EV PARS SYST
  • [10] Lin Dekang, 2001, P ACM SIGKDD C KNOWL, P323, DOI DOI 10.1145/502512.502559