Singular del Pezzo surfaces whose universal torsors are hypersurfaces

被引:41
作者
Derenthal, Ulrich [1 ]
机构
[1] Univ Munich, Math Inst, D-80333 Munich, Germany
基金
瑞士国家科学基金会;
关键词
MANINS CONJECTURE; BOUNDED HEIGHT; RATIONAL-POINTS; DELPEZZO SURFACES; COX-RINGS; DESCENT; NUMBER; COMPACTIFICATIONS; VARIETIES; PLANE;
D O I
10.1112/plms/pdt041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify all generalized del Pezzo surfaces (that is, minimal desingularizations of singular del Pezzo surfaces containing only rational double points) whose universal torsors are open subsets of hypersurfaces in affine space. Equivalently, their Cox rings are polynomial rings with exactly one relation. For all 30 types with this property, we describe the Cox rings in detail. These explicit descriptions can be applied to study Manin's conjecture on the asymptotic behavior of the number of rational points of bounded height for singular del Pezzo surfaces, using the universal torsor method.
引用
收藏
页码:638 / 681
页数:44
相关论文
共 72 条
[1]  
[Anonymous], CLASSICAL ALGEBRAIC
[2]   Inhomogeneous cubic congruences and rational points on del Pezzo surfaces [J].
Baier, Stephan ;
Browning, Tim D. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 680 :69-151
[3]   THE NUMBER OF RATIONAL-POINTS OF BOUNDED HEIGHT OF ALGEBRAIC-VARIETIES [J].
BATYREV, VV ;
MANIN, YI .
MATHEMATISCHE ANNALEN, 1990, 286 (1-3) :27-43
[4]  
Batyrev VV, 2004, PROG MATH, V226, P85
[5]  
Batyrev VV, 1998, J ALGEBRAIC GEOM, V7, P15
[6]   RATIONAL MAPPINGS OF DELPEZZO SURFACES, AND SINGULAR COMPACTIFICATIONS OF 2-DIMENSIONAL AFFINE VARIETIES [J].
BINDSCHADLER, D ;
BRENTON, L ;
DRUCKER, D .
TOHOKU MATHEMATICAL JOURNAL, 1984, 36 (04) :591-609
[7]   CHAPTER 1 Introduction 1.1. Position and origin of the issue [J].
Bourqui, David .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 211 (994) :1-+
[8]   Counting curves on the plane blown up in three collinear points [J].
Bourqui, David .
ANNALES DE L INSTITUT FOURIER, 2009, 59 (05) :1847-1895
[9]   The density of rational points on a certain singular cubic surface [J].
Browning, T. D. .
JOURNAL OF NUMBER THEORY, 2006, 119 (02) :242-283
[10]  
Browning T. D., 2007, Clay Math. Proc., P39