On a weighted inequality of Hardy type in spaces Lp(.)

被引:25
作者
Mamedov, Farman I. [1 ]
Harman, Aziz [1 ]
机构
[1] Dicle Univ, Dept Math, TR-21280 Diyarbakir, Turkey
关键词
Hardy operator; Hardy inequality; Variable exponents; Weighted inequality;
D O I
10.1016/j.jmaa.2008.12.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The boundedness of Hardy type operator Hf (x) = integral((t is an element of R)n(:) (vertical bar t vertical bar <=vertical bar x vertical bar)) f(t)dt is studied in weighted variable exponent Lebesgue spaces L-p(.). The necessary and sufficient criterion established on the weight functions v(x), omega(x) and exponents p(x). q(x) for the Hardy operator to be bounded from L-p(.)(omega) to L-q(.)(v). The exponents satisfy a modified logarithmic condition near zero and at infinity: there exists delta > 0, there exists integral(infinity), there exists f(0) is an element of R sup(x is an element of B(o,delta)) vertical bar f(x) - f (0)vertical bar In I/W(x) < infinity: there exists N > 1 sup(x is an element of R)n(\B(0,N)) vertical bar f(x) - f(infinity)vertical bar In W(x) < infinity, where W(x) = integral({t is an element of R)n(:) (vertical bar t vertical bar <=vertical bar x vertical bar})omega(-1/(p(t)-1))(t)dt. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:521 / 530
页数:10
相关论文
共 16 条
[1]  
Cañestro MIA, 2006, P JPN ACAD A-MATH, V82, P126
[2]  
[Anonymous], 2007, Fract. Calc. Appl. Anal.
[3]  
[Anonymous], 2003, FRACT CALC APPL ANAL
[4]  
[Anonymous], 2003, Fract. Calc. Appl. Anal.
[5]  
[Anonymous], 2005, Georgian Math J
[6]  
[Anonymous], 2005, GEORGIAN MATH J
[7]   Weighted Hardy modular inequalities in variable Lp spaces for decreasing functions [J].
Boza, Santiago ;
Soria, Javier .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (01) :383-388
[8]  
Breadley J. S., 1978, CAN MATH B, V21, p405?408, DOI 10.4153/CMB-1978-071-7
[9]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[10]  
Kokilashvili V, 2004, REV MAT IBEROAM, V20, P493