Construction of sliced (nearly) orthogonal Latin hypercube designs

被引:27
作者
Huang, Hengzhen
Yang, Jian-Feng
Liu, Min-Qian [1 ]
机构
[1] Nankai Univ, Sch Math Sci, Dept Stat, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Computer experiment; Correlation; Kronecker sum; Space-filling design; COMPUTER EXPERIMENTS; MODELS;
D O I
10.1016/j.jco.2013.10.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Sliced Latin hypercube designs are very useful for running a computer model in batches, ensembles of multiple computer models, computer experiments with qualitative and quantitative factors, cross-validation and data pooling. However, the presence of highly correlated columns makes the data analysis intractable. In this paper, a construction method for sliced (nearly) orthogonal Latin hypercube designs is developed. The resulting designs have flexible sizes and most are new. With the orthogonality or near orthogonality being guaranteed, the space-filling property of the resulting designs is also improved. Examples are provided for illustrating the proposed method. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:355 / 365
页数:11
相关论文
共 27 条
[1]   Some new classes of orthogonal Latin hypercube designs [J].
Ai, Mingyao ;
He, Yuanzhen ;
Liu, Senmao .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (10) :2809-2818
[2]  
[Anonymous], 2003, QUAL ENG
[3]   Computer model validation with functional output [J].
Bayarri, M. J. ;
Berger, J. O. ;
Cafeo, J. ;
Garcia-Donato, G. ;
Liu, F. ;
Palomo, J. ;
Parthasarathy, R. J. ;
Paulo, R. ;
Sacks, J. ;
Walsh, D. .
ANNALS OF STATISTICS, 2007, 35 (05) :1874-1906
[4]   Orthogonal and nearly orthogonal designs for computer experiments [J].
Bingham, Derek ;
Sitter, Randy R. ;
Tang, Boxin .
BIOMETRIKA, 2009, 96 (01) :51-65
[5]  
Deng X.W., 2013, LASSO NEARLY O UNPUB
[6]  
Fang KT, 2006, CH CRC COMP SCI DATA, P3
[7]   Block-circulant matrices for constructing optimal Latin hypercube designs [J].
Georgiou, S. D. ;
Stylianou, S. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (05) :1933-1943
[8]   Orthogonal Latin hypercube designs from generalized orthogonal designs [J].
Georgiou, Stelios D. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (04) :1530-1540
[9]   Prediction for Computer Experiments Having Quantitative and Qualitative Input Variables [J].
Han, Gang ;
Santner, Thomas J. ;
Notz, William I. ;
Bartel, Donald L. .
TECHNOMETRICS, 2009, 51 (03) :278-288
[10]   A generalized discrepancy and quadrature error bound [J].
Hickernell, FJ .
MATHEMATICS OF COMPUTATION, 1998, 67 (221) :299-322