TWO-WEIGHTED INEQUALITIES FOR THE FRACTIONAL INTEGRAL ASSOCIATED TO THE SCHRODINGER OPERATOR

被引:0
作者
Crescimbeni, R. [1 ,2 ]
Hartzstein, S. [3 ,4 ]
Salinas, O. [3 ,4 ]
机构
[1] UNCo, Fac Econ & Adm, Dept Matemat, Neuquen, Argentina
[2] IITCI CONICET, Neuquen, Argentina
[3] UNL, Fac Ingn Quim, Dept Matemat, Santa Fe, Argentina
[4] IMAL CONICET, Santa Fe, Argentina
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2020年 / 23卷 / 04期
关键词
Fractional integral; weights; Schrodinger; BMO; Lipschitz; WEIGHTED INEQUALITIES; NORM INEQUALITIES; SINGULAR-INTEGRALS; BOUNDEDNESS; POTENTIALS; SPACES;
D O I
10.7153/mia-2020-23-94
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we prove that the fractional integral operator associated to the Schrodinger second order differential operator L-alpha/2 = (-Delta + V)(-alpha/2) maps with continuity weak Lebesgue space L-p,L-infinity (v) into weighted Campanato-holder type spaces BMOL beta(w), thus improving regularity under appropriate conditions on the pair of weights (v,w) and the parameters p, alpha and beta. We also prove the continuous mapping from BMOL beta(v) to BMOL gamma(w) for adequate pair of weights. Our results improve those known for the same weight in both sides of the inequality and they also enlarge the families of weights known for the classical fractional integral associated to the Laplacian operator L = -Delta.
引用
收藏
页码:1227 / 1259
页数:33
相关论文
共 38 条
  • [1] [Anonymous], 1964, Proc. Am. Math. Soc., DOI 10.2307/2034586
  • [2] [Anonymous], 1965, Ann. Scuola Norm. Sup. Pisa
  • [3] Weighted inequalities for negative powers of Schrodinger operators
    Bongioanni, B.
    Harboure, E.
    Salinas, O.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (01) : 12 - 27
  • [4] Classes of weights related to Schrodinger operators
    Bongioanni, B.
    Harboure, E.
    Salinas, O.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) : 563 - 579
  • [5] Riesz transforms related to Schrodinger operators acting on BMO type spaces
    Bongioanni, B.
    Harboure, E.
    Salinas, O.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) : 115 - 131
  • [6] Schrodinger type singular integrals: weighted estimates for p=1
    Bongioanni, Bruno
    Cabral, Adrian
    Harboure, Eleonor
    [J]. MATHEMATISCHE NACHRICHTEN, 2016, 289 (11-12) : 1341 - 1369
  • [7] Sharp two-weight inequalities for singular integrals, with applications to the Hilbert transform and the Sarason conjecture
    Cruz-Uribe, D.
    Martell, J. M.
    Perez, C.
    [J]. ADVANCES IN MATHEMATICS, 2007, 216 (02) : 647 - 676
  • [8] Cruz-Uribe D, 2000, INDIANA U MATH J, V49, P697
  • [9] Cruz-Uribe D, 2002, ANN SCUOLA NORM-SCI, V1, P821
  • [10] Logarithmic bump conditions and the two-weight boundedness of Calderon-Zygmund operators
    Cruz-Uribe, David
    Reznikov, Alexander
    Volberg, Alexander
    [J]. ADVANCES IN MATHEMATICS, 2014, 255 : 706 - 729