Solitary wave solution for the generalized KdV equation with time-dependent damping and dispersion

被引:49
作者
Biswas, Anjan [1 ]
机构
[1] Delaware State Univ, Ctr Res & Educ Opt Sci & Applicat, Dept Appl Math & Theoret Phys, Dover, DE 19901 USA
关键词
Solitary wave; Integrability; Dispersion; Damping; DYNAMICS; MKDV;
D O I
10.1016/j.cnsns.2008.09.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solitary wave solution of the generalized KdV equation is obtained in this paper in presence of time-dependent damping and dispersion. The approach is from a solitary wave ansatze that leads to the exact solution. A particular example is also considered to complete the analysis. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:3503 / 3506
页数:4
相关论文
共 10 条
[1]   Adiabatic parameter dynamics of perturbed solitary waves [J].
Antonova, Mariana ;
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (03) :734-748
[2]   Soliton perturbation theory for the compound KdV equation [J].
Biswas, Anjan ;
Konar, Swapan .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (02) :237-243
[3]   Exact solutions to the combined KdV-mKdV equation by the extended mapping method [J].
Krishnan, EV ;
Peng, YZ .
PHYSICA SCRIPTA, 2006, 73 (04) :405-409
[4]  
KRISHNAN EV, 2001, INT J MATH MATH SCI, V27, P215
[5]   Lax pair, Backlund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation [J].
Li, Juan ;
Xu, Tao ;
Meng, Xiang-Hua ;
Zhang, Ya-Xing ;
Zhang, Hai-Qiang ;
Tian, Bo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) :1443-1455
[6]   New exact explicit solutions of the generalized KdV equations [J].
Senthilkumaran, M. ;
Pandiaraja, D. ;
Vaganan, B. Mayil .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) :693-699
[7]   Exact linearization and invariant solutions of the generalized burgers equation with linear damping and variable viscosity [J].
Vaganan, B. Mayil ;
Kumaran, M. Senthil .
STUDIES IN APPLIED MATHEMATICS, 2006, 117 (02) :95-108
[8]   New sets of solitary wave solutions to the KdV, mKdV, and the generalized KdV equations [J].
Wazwaz, Abdul-Majid .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (02) :331-339
[9]  
Xiao-Yan T., 2006, CHINESE PHYS LETT, V23, P887
[10]  
ZHIDKOV PE, 2001, K DEVRIES NONLINEAR