Mean dimension and AH-algebras with diagonal maps

被引:12
作者
Niu, Zhuang [1 ]
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
AH-algebras; Mean dimension; Dimension growth; Cuntz semigroup; C-ASTERISK-ALGEBRAS; ASYMPTOTIC UNITARY EQUIVALENCE; REAL RANK; STABLE RANK; CLASSIFICATION; STABILITY; GROWTH;
D O I
10.1016/j.jfa.2014.02.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Mean dimension for AR-algebras with diagonal maps is introduced. It is shown that if a simple unital AR-algebra with diagonal maps has mean dimension zero, then it has strict comparison on positive elements. In particular, the strict order on projections is determined by traces. Moreover, a lower bound of the mean dimension is given in term of Toms' comparison radius. Using classification results, if a simple unital All-algebra with diagonal maps has mean dimension zero, it must be an AH-algebra without dimension growth. Two classes of AH-algebras with diagonal maps are shown to have mean dimension zero: the class of AH-algebras with at most countably many extremal traces, and the class of AH-algebras with numbers of extreme traces which induce same state on the K-0-group being uniformly bounded (in particular, this class includes AR-algebras with real rank zero). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:4938 / 4994
页数:57
相关论文
共 35 条
[1]   SKEW PRODUCTS OF RELATIONS AND THE STRUCTURE OF SIMPLE CSTAR-ALGEBRAS [J].
BLACKADAR, B ;
KUMJIAN, A .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (01) :55-63
[2]   EXTENDING STATES ON PREORDERED SEMIGROUPS AND THE EXISTENCE OF QUASI-TRACES ON C-ASTERISK-ALGEBRAS [J].
BLACKADAR, B ;
RORDAM, M .
JOURNAL OF ALGEBRA, 1992, 152 (01) :240-247
[3]  
Blackadar B., 1993, RES NOTES MATH, V5, P11
[4]   Three Applications of the Cuntz Semigroup [J].
Brown, Nathanial P. ;
Toms, Andrew S. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
[5]   DIMENSION FUNCTIONS ON SIMPLE C-STAR-ALGEBRAS [J].
CUNTZ, J .
MATHEMATISCHE ANNALEN, 1978, 233 (02) :145-153
[6]   On the classification of C*-algebras of real rank zero .2. [J].
Elliott, GA ;
Gong, GH .
ANNALS OF MATHEMATICS, 1996, 144 (03) :497-610
[7]   On the classification of simple inductive limit C*-algebras, II: The isomorphism theorem [J].
Elliott, George A. ;
Gong, Guihua ;
Li, Liangqing .
INVENTIONES MATHEMATICAE, 2007, 168 (02) :249-320
[8]   A class of simple C*-algebras with stable rank one [J].
Elliott, George A. ;
Ho, Toan M. ;
Toms, Andrew S. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (02) :307-322
[9]  
Engelking R., 1978, DIMENSION THEORY
[10]  
Gong GH., 2002, DOC MATH, V7, P255