Carbon-Based Materials Used for Perovskite Solar Cells

被引:27
作者
Wu, Zhongwei [1 ,2 ]
Song, Tao [1 ,2 ]
Sun, Baoquan [1 ,2 ]
机构
[1] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215123, Peoples R China
来源
CHEMNANOMAT | 2017年 / 3卷 / 02期
基金
中国国家自然科学基金;
关键词
carbon; carbon nanotubes; fullerene; graphene; perovskite solar cells; HOLE-CONDUCTOR-FREE; GRAPHENE OXIDE; EFFICIENCY ENHANCEMENT; ELECTRON EXTRACTION; DIFFUSION LENGTHS; TEMPERATURE; HYSTERESIS; LAYER; INTERFACE; STABILITY;
D O I
10.1002/cnma.201600312
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organometal halide perovskite solar cells have become a superstar in the photovoltaic field over the past few years. The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has rapidly been boosted to a high reported value of 22.1%, which is even better than that of the commercialized multicrystalline silicon solar cells. However, to some extent, the low-cost and high-performance photovoltaic technique still suffers from stability and hysteresis issues. Without doubt, carbon-based materials (e.g., fullerene and its derivatives, graphene-related materials, carbon nanotubes, carbon paste) have been demonstrated to have positive effects on overcoming the above challenges, in cooperation with the optimizations in perovskite absorber layer, interface, and device structure. In this review, we will first introduce some fundamental principles of PSCs in terms of device structure and carbon-based materials. Then, the applications of various carbon-based materials in PSCs will be summarized, which are directly related to the potentiality for exploitation in device performance and stability. Finally, we will draw conclusions and highlight some promising research directions for carbon material-based PSCs.
引用
收藏
页码:75 / 88
页数:14
相关论文
共 74 条
[1]   High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers [J].
Abrusci, Agnese ;
Stranks, Samuel D. ;
Docampo, Pablo ;
Yip, Hin-Lap ;
Jen, Alex K-Y. ;
Snaith, Henry J. .
NANO LETTERS, 2013, 13 (07) :3124-3128
[2]  
[Anonymous], 2016, Adv. Energy Mater.
[3]  
Bai S, 2014, NANO RES, V7, P1749, DOI [10.1007/s12274-014-0534-8, 10.1007/s12274-014-0606-9]
[4]   Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells [J].
Bi, Cheng ;
Wang, Qi ;
Shao, Yuchuan ;
Yuan, Yongbo ;
Xiao, Zhengguo ;
Huang, Jinsong .
NATURE COMMUNICATIONS, 2015, 6
[5]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[6]   Well-Defined Thiolated Nanographene as Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells [J].
Cao, Jing ;
Liu, Yu-Min ;
Jing, Xiaojing ;
Yin, Jun ;
Li, Jing ;
Xu, Bin ;
Tan, Yuan-Zhi ;
Zheng, Nanfeng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (34) :10914-10917
[7]   Hole-Conductor-Free Fully Printable Mesoscopic Solar Cell with Mixed-Anion Perovskite CH3NH3PbI(3-x)(BF4)x [J].
Chen, Jiangzhao ;
Rong, Yaoguang ;
Mei, Anyi ;
Xiong, Yuli ;
Liu, Tongfa ;
Sheng, Yusong ;
Jiang, Pei ;
Hong, Li ;
Guan, Yanjun ;
Zhu, Xiaotong ;
Hou, Xiaomeng ;
Duan, Miao ;
Zhao, Jianquan ;
Li, Xiong ;
Han, Hongwei .
ADVANCED ENERGY MATERIALS, 2016, 6 (05)
[8]   Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process [J].
Chen, Qi ;
Zhou, Huanping ;
Hong, Ziruo ;
Luo, Song ;
Duan, Hsin-Sheng ;
Wang, Hsin-Hua ;
Liu, Yongsheng ;
Li, Gang ;
Yang, Yang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (02) :622-625
[9]   Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates [J].
Docampo, Pablo ;
Ball, James M. ;
Darwich, Mariam ;
Eperon, Giles E. ;
Snaith, Henry J. .
NATURE COMMUNICATIONS, 2013, 4
[10]   Abnormal crystal growth in CH3NH3PbI3-xClx using a multi-cycle solution coating process [J].
Dong, Qingfeng ;
Yuan, Yongbo ;
Shao, Yuchuan ;
Fang, Yanjun ;
Wang, Qi ;
Huang, Jinsong .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (08) :2464-2470