Certain fractional calculus formulas involving extended generalized Mathieu series

被引:4
作者
Singh, Gurmej [1 ,2 ]
Agarwal, Praveen [3 ,4 ]
Araci, Serkan [5 ]
Acikgoz, Mehmet [6 ]
机构
[1] Mata Sahib Kaur Girls Coll, Dept Math, Bathinda, India
[2] Singhania Univ, Dept Math, Jhunjhunu, India
[3] Anand Int Coll Engn, Dept Math, Jaipur, Rajasthan, India
[4] Ctr Basic & Appl Sci, Jaipur, Rajasthan, India
[5] Hasan Kalyoncu Univ, Fac Econ Adm & Social Sci, Dept Math, Gaziantep, Turkey
[6] Gaziantep Univ, Fac Sci & Arts, Dept Math, Gaziantep, Turkey
关键词
Fractional integral operators; Fractional derivative operators; Extended generalized Mathieu series; Hypergeometric function; Gamma function; POWER-SERIES; FAMILIES; REPRESENTATIONS; OPERATORS; EQUATION; MODEL;
D O I
10.1186/s13662-018-1596-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish fractional integral and derivative formulas by using fractional calculus operators involving the extended generalized Mathieu series. Next, we develop their composition formulas by applying the integral transforms. Finally, we discuss special cases.
引用
收藏
页数:30
相关论文
共 71 条
[1]  
Abdelkawy MA, 2015, ROM REP PHYS, V67, P773
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]  
[Anonymous], 1978, Kyushu University
[4]  
[Anonymous], 1994, GEN FRACTIONAL CALCU
[5]  
[Anonymous], 2010, NEW TRENDS NANOTECHN
[6]  
[Anonymous], 2007, Fract. Calc. Appl. Anal
[7]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[8]  
[Anonymous], 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8
[9]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[10]  
[Anonymous], 2001, J FRACT CALC