A COMBINATORIAL FORMULA FOR NONSYMMETRIC MACDONALD POLYNOMIALS

被引:54
作者
Haglund, J. [1 ]
Haiman, M. [2 ]
Loehr, N. [3 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
关键词
D O I
10.1353/ajm.2008.0015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a combinatorial formula for the nonsymmetric Macdonald polynomials E-mu (x;q,t) The formula generalizes Our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials J(mu)(x;q,t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop and Sahi, that characterizes the nonsymmetric Macdonald polynomials.
引用
收藏
页码:359 / 383
页数:25
相关论文
共 25 条
[1]  
[Anonymous], INT MATH RES NOT
[2]   DOUBLE AFFINE HECKE ALGEBRAS AND MACDONALDS CONJECTURES [J].
CHEREDNIK, I .
ANNALS OF MATHEMATICS, 1995, 141 (01) :191-216
[3]   MACDONALDS EVALUATION CONJECTURES AND DIFFERENCE FOURIER-TRANSFORM [J].
CHEREDNIK, I .
INVENTIONES MATHEMATICAE, 1995, 122 (01) :119-145
[4]  
Cherednik I., 1997, SELECTA MATH, V3, P459, DOI DOI 10.1007/S000290050017
[5]  
Cherednik I., 2005, Double Affine Hecke Algebras, V319
[6]   A combinatorial formula for Macdonald polynomials [J].
Haglund, J ;
Haiman, M ;
Loehr, N .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (03) :735-761
[7]   Combinatorial theory of Macdonald polynomials I: Proof of Haglund's formula [J].
Haglund, J ;
Haiman, M ;
Loehr, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (08) :2690-2696
[8]   Hilbert schemes, polygraphs and the Macdonald positivity conjecture [J].
Haiman, M .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) :941-1006
[9]  
Haiman M., 2006, INT C MATHEMATICIANS, V3, P843
[10]   A weight multiplicity formula for Demazure modules [J].
Ion, B .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (05) :311-323