Biomechanical response of a novel intervertebral disc prosthesis using functionally graded polymers: A finite element study

被引:13
作者
Jiang, Qifeng [1 ]
Zairi, Fahmi [2 ]
Frederix, Caroline [3 ]
Yan, Zhu [1 ,2 ]
Derrouiche, Amil [2 ]
Qu, Zhengwei [2 ]
Liu, Xiaobing [1 ]
Zairi, Fahed [4 ]
机构
[1] Xihua Univ, Key Lab Fluid & Power Machinery, Chengdu 610039, Sichuan, Peoples R China
[2] Lille Univ, Civil Engn & Geoenvironm Lab, EA 4515 LGCgE, F-59000 Lille, France
[3] Solvay Campus,Ransbeek St 310, B-1120 Brussels, Belgium
[4] Hop Prive Le Bois, Ramsay Gen Sante, F-59000 Lille, France
关键词
Artificial disc replacement; Functionally graded polymers; Finite element computation; Design study; MECHANICAL-PROPERTIES; SEMICRYSTALLINE POLYMERS; PHYSIOLOGICAL CURVATURE; ETHYLENE COPOLYMERS; CRYSTAL CONTENT; CERVICAL-SPINE; MODEL; POLYETHYLENE; ARTHROPLASTY; MODULUS;
D O I
10.1016/j.jmbbm.2019.02.021
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
With their gradual and continuous properties, functionally graded polymers (FGP) have high potentials to reproduce the regional variation in microstructure/property of the natural intervertebral disc and, therefore, the functional anatomy and biomechanics of the soft tissue. This paper evaluates by finite element analysis the biomechanical response and stress distribution of a novel disc prosthesis using FGP. The kinetics of the FGP parameters is designed using experimental data issued from linear ethylene copolymers over a wide crystallinity range. The radial variation in crystallinity index within the disc prosthesis varies gradually and continuously following a special function in the aim to tailor and optimize the FGP parameters. The experimental data of a healthy human cervical spine segment are used to predict the optimal model of the FGP disc prosthesis loaded under different physiological loading conditions, i.e. rotation, lateral bending and flexion/extension. The results suggest that the FGP parameters can be tailored to control the stiffening, the non-linear behavior, the inelastic effects and the stress distribution in the aim to propose the optimal prosthesis model giving the great opportunity of patient-specific FGP prostheses via 3D printing technologies.
引用
收藏
页码:288 / 297
页数:10
相关论文
共 51 条
[1]   A two-phase hyperelastic-viscoplastic constitutive model for semi-crystalline polymers: Application to polyethylene materials with a variable range of crystal fractions [J].
Abdul-Hameed, H. ;
Messager, T. ;
Ayoub, G. ;
Zairi, F. ;
Nait-Abdelaziz, M. ;
Qu, Z. ;
Zairi, F. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2014, 37 :323-332
[2]   Large-strain viscoelastic-viscoplastic constitutive modeling of semi-crystalline polymers and model identification by deterministic/evolutionary approach [J].
Abdul-Hameed, Hemin ;
Messager, Tanguy ;
Zairi, Fahmi ;
Nait-Abdelaziz, Moussa .
COMPUTATIONAL MATERIALS SCIENCE, 2014, 90 :241-252
[3]   Lumbar Disk Arthroplasty for Degenerative Disk Disease: Literature Review [J].
Abi-Hanna, David ;
Kerferd, Jack ;
Phan, Kevin ;
Rao, Prashanth ;
Mobbs, Ralph .
WORLD NEUROSURGERY, 2018, 109 :188-196
[4]   'Stress' distributions inside intervertebral discs - The effects of age and degeneration [J].
Adams, MA ;
McNally, DS ;
Dolan, P .
JOURNAL OF BONE AND JOINT SURGERY-BRITISH VOLUME, 1996, 78B (06) :965-972
[5]  
Adams MA., 2012, The Biomechanics of Back Pain
[6]  
[Anonymous], 2000, HDB POLYETHYLENE STR, DOI DOI 10.1201/9781482295467
[7]   Effects of crystal content on the mechanical behaviour of polyethylene under finite strains: Experiments and constitutive modelling [J].
Ayoub, G. ;
Zairi, F. ;
Frederix, C. ;
Gloaguen, J. M. ;
Nait-Abdelaziz, M. ;
Seguela, R. ;
Lefebvre, J. M. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2011, 27 (04) :492-511
[8]   Digital fabrication of multi-material biomedical objects [J].
Cheung, H. H. ;
Choi, S. H. .
BIOFABRICATION, 2009, 1 (04)
[9]   Recent advances in 3D printing of biomaterials [J].
Chia, Helena N. ;
Wu, Benjamin M. .
JOURNAL OF BIOLOGICAL ENGINEERING, 2015, 9
[10]   MECHANICAL-PROPERTIES OF MODEL POLYETHYLENES - TENSILE ELASTIC-MODULUS AND YIELD STRESS [J].
CRIST, B ;
FISHER, CJ ;
HOWARD, PR .
MACROMOLECULES, 1989, 22 (04) :1709-1718