Fast Localization With Unknown Transmit Power and Path-Loss Exponent in WSNs Based on RSS Measurements

被引:30
作者
Najarro, Lismer Andres Caceres [1 ]
Song, Iickho [2 ,3 ]
Tomic, Slavisa [4 ]
Kim, Kiseon [1 ]
机构
[1] Gwangju Inst Sci & Technol, Sch Elect Engn & Comp Sci, Gwangju 61005, South Korea
[2] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
[3] Chongqing Univ Technol, Liangjiang Int Coll, Chongqing 401135, Peoples R China
[4] Univ Lusofona Humanidades & Tecnologias, Cognit & People Centr Comp Lab, P-1749024 Lisbon, Portugal
基金
新加坡国家研究基金会;
关键词
Sociology; Maximum likelihood estimation; Wireless sensor networks; Upper bound; Electronic mail; Cost function; Differential evolution; localization; path-loss exponent; received signal strength; transmit power;
D O I
10.1109/LCOMM.2020.3016710
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Unlike most studies assuming exact knowledge of the transmit power and path-loss exponent, we address the localization problem under a more practical assumption that the exact values of the transmit power and/or path-loss exponent are unavailable. We propose an algorithm based on the differential evolution, opposition based learning, and adaptive redirection that jointly estimates the position of the target node and the parameters. Results from simulation and indoor experiments show that the proposed algorithm provides higher localization accuracy and requires less computational time than conventional algorithms especially when the exact values of the transmit power and path-loss exponent are unavailable simultaneously.
引用
收藏
页码:2756 / 2760
页数:5
相关论文
共 13 条
[1]   Differential Evolution With Opposition and Redirection for Source Localization Using RSS Measurements in Wireless Sensor Networks [J].
Caceres Najarro, Lismer Andres ;
Song, Iickho ;
Kim, Kiseon .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (04) :1736-1747
[2]   RSS-Based Cooperative Localization in Wireless Sensor Networks via Second-Order Cone Relaxation [J].
Chang, Shengming ;
Li, Youming ;
Wang, Hui ;
Hu, Wenfei ;
Wu, Yongqing .
IEEE ACCESS, 2018, 6 :54097-54105
[3]   A Closed-Form Solution for Localization Based on RSS [J].
Ketabalian, Hamid ;
Biguesh, Mehrzad ;
Sheikhi, Abbas .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (02) :912-923
[4]  
Niculescu Dragos, 2004, P 10 ANN INT C MOB C, P58
[5]   An Indoor Path Loss Prediction Model Using Wall Correction Factors for Wireless Local Area Network and 5G Indoor Networks [J].
Obeidat, H. A. ;
Asif, R. ;
Ali, N. T. ;
Dama, Y. A. ;
Obeidat, O. A. ;
Jones, S. M. R. ;
Shuaieb, W. S. ;
Al-Sadoon, M. A. ;
Hameed, K. W. ;
Alabdullah, A. A. ;
Abd-Alhameed, R. A. .
RADIO SCIENCE, 2018, 53 (04) :544-564
[6]  
Polik Imre., 2005, Addendum to the SeDuMi User Guide Version 1.1
[7]  
Prasad Kothareddy, 2019, Webbia, V74, P63, DOI 10.1080/00837792.2019.1599651
[8]  
Rappaport T. S, 1996, Wireless Communications: Principles and Practice, V2
[9]   RSS Localization Using Unknown Statistical Path Loss Exponent Model [J].
Sari, Rouhollah ;
Zayyani, Hadi .
IEEE COMMUNICATIONS LETTERS, 2018, 22 (09) :1830-1833
[10]   Opposition-based learning: A new scheme for machine intelligence [J].
Tizhoosh, Hamid R. .
INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 1, PROCEEDINGS, 2006, :695-701