In this paper we present an unconditionally solvable and energy stable second order numerical scheme for the three-dimensional (3D) Cahn-Hilliard (CH) equation. The scheme is a two-step method based on a second order convex splitting of the physical energy, combined with a centered difference in space. The equation at the implicit time level is nonlinear but represents the gradients of a strictly convex function and is thus uniquely solvable, regardless of time step-size. The nonlinear equation is solved using an efficient nonlinear multigrid method. In addition, a global in time H-h(2). bound for the numerical solution is derived at the discrete level, and this bound is independent on the final time. As a consequence, an unconditional convergence (for the time step s in terms of the spatial grid size h) is established, in a discrete L-s(infinity) (0,T;H-h(2)) norm, for the proposed second order scheme. The results of numerical experiments are presented and confirm the efficiency and accuracy of the scheme.
引用
收藏
页码:489 / 515
页数:27
相关论文
共 48 条
[31]
Furihata D, 2001, NUMER MATH, V87, P675, DOI 10.1007/s002110000212
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Guan, Zhen
;
Wang, Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts Dartmouth, Dept Math, N Dartmouth, MA 02747 USA
Soochow Univ, Sch Math Sci, Suzhou, Jiangsu, Peoples R ChinaUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Wang, Cheng
;
Wise, Steven M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tennessee, Dept Math, Knoxville, TN 37996 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Guan, Zhen
;
Lowengrub, John S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Lowengrub, John S.
;
Wang, Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts Dartmouth, Dept Math, N Dartmouth, MA 02747 USA
Soochow Univ, Sch Math Sci, Suzhou 215006, Jiangsu, Peoples R ChinaUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Wang, Cheng
;
Wise, Steven M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tennessee, Dept Math, Knoxville, TN 37996 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Guan, Zhen
;
Wang, Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts Dartmouth, Dept Math, N Dartmouth, MA 02747 USA
Soochow Univ, Sch Math Sci, Suzhou, Jiangsu, Peoples R ChinaUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Wang, Cheng
;
Wise, Steven M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tennessee, Dept Math, Knoxville, TN 37996 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Guan, Zhen
;
Lowengrub, John S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Lowengrub, John S.
;
Wang, Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts Dartmouth, Dept Math, N Dartmouth, MA 02747 USA
Soochow Univ, Sch Math Sci, Suzhou 215006, Jiangsu, Peoples R ChinaUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Wang, Cheng
;
Wise, Steven M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tennessee, Dept Math, Knoxville, TN 37996 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA