The color cost of a caterpillar

被引:4
作者
Gionfriddo, M
Harary, F
Tuza, Z
机构
[1] UNIV CATANIA,DEPT MATH,I-95125 CATANIA,ITALY
[2] NEW MEXICO STATE UNIV,DEPT COMP SCI,LAS CRUCES,NM 88003
[3] HUNGARIAN ACAD SCI,INST COMP & AUTOMAT,H-1111 BUDAPEST,HUNGARY
关键词
Algorithm; Caterpillar; Coloring; Tree;
D O I
10.1016/S0012-365X(96)00325-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the positive integers as colors, the cost of a given coloring of the nodes of a graph G is the sum of its colors. The color cost of G is then the smallest cost of any proper coloring of G, We specify three types of caterpillar using their codes. These specifications enable the representation of an arbitrary caterpillar as a sequence of these types. The representation is utilized to develop a fast algorithm for calculating the color cost of a given caterpillar.
引用
收藏
页码:125 / 130
页数:6
相关论文
共 9 条
[1]  
HAGE P, 1983, STRUCTURAL MODELS AN
[2]   TREES WITH HAMILTONIAN SQUARE [J].
HARARY, F ;
SCHWENK, A .
MATHEMATIKA, 1971, 18 (35) :138-&
[3]  
Harary F., 1973, Discrete Mathematics, V6, P359, DOI 10.1016/0012-365X(73)90067-8
[4]  
Harary F., 1969, GRAPH THEORY
[5]  
Jordan Camille, 1869, J. Fur die Reine Angew. Math, V71, P185, DOI [DOI 10.1515/CRLL.1869.70.185, 10.1515/crll.1869.70.]
[6]  
KUBICKA E, 1989, P ACM COMP SCI C, P39
[7]   TIGHT BOUNDS ON THE CHROMATIC SUM OF A CONNECTED GRAPH [J].
THOMASSEN, C ;
ERDOS, P ;
ALAVI, Y ;
MALDE, PJ ;
SCHWENK, AJ .
JOURNAL OF GRAPH THEORY, 1989, 13 (03) :353-357
[8]   CONTRACTIONS AND MINIMAL KAPPA-COLORABILITY [J].
TUZA, Z .
GRAPHS AND COMBINATORICS, 1990, 6 (01) :51-59
[9]  
Tuza Zs., 1990, MATEMATICHE, V45, P219