The geometry of minimal surfaces of finite genus II;: nonexistence of one limit end examples

被引:19
作者
Meeks, WH [1 ]
Pérez, J
Ros, A
机构
[1] Univ Massachusetts, Lederle Grad Res Ctr, Dept Math, Amherst, MA 01003 USA
[2] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
D O I
10.1007/s00222-004-0374-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We demonstrate that a properly embedded minimal surface in R-3 with finite genus cannot have one limit end.
引用
收藏
页码:323 / 341
页数:19
相关论文
共 30 条
[1]  
[Anonymous], INVENT MATH
[2]   THE STRUCTURE OF SINGLY-PERIODIC MINIMAL-SURFACES [J].
CALLAHAN, M ;
HOFFMAN, D ;
MEEKS, WH .
INVENTIONES MATHEMATICAE, 1990, 99 (03) :455-481
[3]  
Colding TH, 2002, INT MATH RES NOTICES, V2002, P1111
[4]  
COLDING TH, IN PRESS ANN MATH
[5]  
COLDING TH, IN PRESS SURVEYS DIF, V9
[6]  
COLDING TH, UNPUB SPACE EMBEDDED, V5
[7]   Topology and curvature of properly embedded minimal surfaces in 3-space [J].
Collin, P .
ANNALS OF MATHEMATICS, 1997, 145 (01) :1-31
[8]  
COLLIN P, IN PRESS J DIFFER GE
[9]   STABLE COMPLETE MINIMAL SURFACES IN R3 ARE PLANES [J].
DOCARMO, M ;
PENG, CK .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (06) :903-906
[10]   THE STRUCTURE OF COMPLETE STABLE MINIMAL-SURFACES IN 3-MANIFOLDS OF NONNEGATIVE SCALAR CURVATURE [J].
FISCHERCOLBRIE, D ;
SCHOEN, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (02) :199-211