Proactive Content Caching Based on Actor-Critic Reinforcement Learning for Mobile Edge Networks

被引:16
作者
Jiang, Wei [1 ]
Feng, Daquan [1 ]
Sun, Yao [2 ]
Feng, Gang [3 ,4 ]
Wang, Zhenzhong [5 ]
Xia, Xiang-Gen [6 ]
机构
[1] Shenzhen Univ, Guangdong Prov Engn Lab Digital Creat Technol, Shenzhen Key Lab Digital Creat Technol, Coll Elect & Informat Engn,Guangdong Key Lab Inte, Shenzhen 518060, Peoples R China
[2] Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
[3] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Scotland
[4] Univ Elect Sci & Technol China, Natl Key Lab Sci & Technol Commun, Chengdu 611731, Peoples R China
[5] Tech Management Ctr, China Media Grp, Beijing 100020, Peoples R China
[6] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
基金
国家重点研发计划;
关键词
Actor-critic algorithm; branching neural network; reinforcement learning; mobile edge caching; 5G NETWORKS; SMALL-CELL; DELIVERY; POLICY;
D O I
10.1109/TCCN.2021.3130995
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Mobile edge caching/computing (MEC) has emerged as a promising approach for addressing the drastic increasing mobile data traffic by bringing high caching and computing capabilities to the edge of networks. Under MEC architecture, content providers (CPs) are allowed to lease some virtual machines (VMs) at MEC servers to proactively cache popular contents for improving users' quality of experience. The scalable cache resource model rises the challenge for determining the ideal number of leased VMs for CPs to obtain the minimum expected downloading delay of users at the lowest caching cost. To address these challenges, in this paper, we propose an actor-critic (AC) reinforcement learning based proactive caching policy for mobile edge networks without the prior knowledge of users' content demand. Specifically, we formulate the proactive caching problem under dynamical users' content demand as a Markov decision process and propose a AC based caching algorithm to minimize the caching cost and the expected downloading delay. Particularly, to reduce the computational complexity, a branching neural network is employed to approximate the policy function in the actor part. Numerical results show that the proposed caching algorithm can significantly reduce the total cost and the average downloading delay when compared with other popular algorithms.
引用
收藏
页码:1239 / 1252
页数:14
相关论文
共 50 条
  • [31] A multi-agent reinforcement learning using Actor-Critic methods
    Li, Chun-Gui
    Wang, Meng
    Yuan, Qing-Neng
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 878 - 882
  • [32] USING ACTOR-CRITIC REINFORCEMENT LEARNING FOR CONTROL AND FLIGHT FORMATION OF QUADROTORS
    Torres, Edgar
    Xu, Lei
    Sardarmehni, Tohid
    PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 5, 2022,
  • [33] Optimal Policy of Multiplayer Poker via Actor-Critic Reinforcement Learning
    Shi, Daming
    Guo, Xudong
    Liu, Yi
    Fan, Wenhui
    ENTROPY, 2022, 24 (06)
  • [34] Supervised actor-critic reinforcement learning with action feedback for algorithmic trading
    Sun, Qizhou
    Si, Yain-Whar
    APPLIED INTELLIGENCE, 2023, 53 (13) : 16875 - 16892
  • [35] A Novel Actor-Critic Motor Reinforcement Learning for Continuum Soft Robots
    Pantoja-Garcia, Luis
    Parra-Vega, Vicente
    Garcia-Rodriguez, Rodolfo
    Vazquez-Garcia, Carlos Ernesto
    ROBOTICS, 2023, 12 (05)
  • [36] Cooperative caching algorithm for mobile edge networks based on multi-agent meta reinforcement learning
    Wei, Zhenchun
    Zhao, Yang
    Lyu, Zengwei
    Yuan, Xiaohui
    Zhang, Yu
    Feng, Lin
    COMPUTER NETWORKS, 2024, 242
  • [37] Game Theory and Reinforcement Learning Based Secure Edge Caching in Mobile Social Networks
    Xu, Qichao
    Su, Zhou
    Lu, Rongxing
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2020, 15 : 3415 - 3429
  • [38] Deep Reinforcement Learning-Based Mobility-Aware UAV Content Caching and Placement in Mobile Edge Networks
    Anokye, Stephen
    Ayepah-Mensah, Daniel
    Seid, Abegaz Mohammed
    Boateng, Gordon Owusu
    Sun, Guolin
    IEEE SYSTEMS JOURNAL, 2022, 16 (01): : 275 - 286
  • [39] Fast convergent actor-critic reinforcement learning based interference coordination algorithm in D2D networks
    Sun, Chen
    Yang, Jijun
    Cao, Zhicheng
    Yang, Zhiyong
    Yang, Youfeng
    Shu, Jian
    AD HOC NETWORKS, 2025, 171
  • [40] Distributed Deep Learning at the Edge: A Novel Proactive and Cooperative Caching Framework for Mobile Edge Networks
    Saputra, Yuris Mulya
    Dinh Thai Hoang
    Nguyen, Diep N.
    Dutkiewicz, Eryk
    Niyato, Dusit
    Kim, Dong In
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (04) : 1220 - 1223