Quantum fluctuations beyond the Gutzwiller approximation in the Bose-Hubbard model

被引:18
作者
Caleffi, Fabio [1 ,2 ,3 ]
Capone, Massimo [1 ,4 ]
Menotti, Chiara [2 ,3 ]
Carusotto, Iacopo [2 ,3 ,5 ]
Recati, Alessio [2 ,3 ,5 ]
机构
[1] Int Sch Adv Studies SISSA, I-34136 Trieste, Italy
[2] Univ Trento, INO CNR BEC Ctr, I-38123 Povo, Italy
[3] Univ Trento, Dipartimento Fis, I-38123 Povo, Italy
[4] CNR IOM Democritos, I-34136 Trieste, Italy
[5] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Trento, Italy
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 03期
关键词
MOTT INSULATOR; SUPERFLUID; ATOMS; METAL; GAS;
D O I
10.1103/PhysRevResearch.2.033276
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a quantum many-body theory of the Bose-Hubbard model based on the canonical quantization of the action derived from a Gutzwiller mean-field ansatz. Our theory is a systematic generalization of the Bogoliubov theory of weakly interacting gases. The control parameter of the theory, defined as the zero point fluctuations on top of the Gutzwiller mean-field state, remains small in all regimes. The approach provides accurate results throughout the whole phase diagram, from the weakly to the strongly interacting superfluid and into the Mott insulating phase. As specific examples of application, we study the two-point correlation functions, the superfluid stiffness, and the density fluctuations, for which quantitative agreement with available quantum Monte Carlo data is found. In particular, the two different universality classes of the superfluid-insulator quantum phase transition at integer and noninteger filling are recovered.
引用
收藏
页数:11
相关论文
共 56 条
[1]   Dynamical mean-field theory for bosons [J].
Anders, Peter ;
Gull, Emanuel ;
Pollet, Lode ;
Troyer, Matthias ;
Werner, Philipp .
NEW JOURNAL OF PHYSICS, 2011, 13
[2]   THE RESONATING VALENCE BOND STATE IN LA2CUO4 AND SUPERCONDUCTIVITY [J].
ANDERSON, PW .
SCIENCE, 1987, 235 (4793) :1196-1198
[3]   A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice [J].
Bakr, Waseem S. ;
Gillen, Jonathon I. ;
Peng, Amy ;
Foelling, Simon ;
Greiner, Markus .
NATURE, 2009, 462 (7269) :74-U80
[4]  
Blaizot J.-P., 1986, Quantum Theory of Finite Systems
[5]   Correlated bosons on a lattice: Dynamical mean-field theory for Bose-Einstein condensed and normal phases [J].
Byczuk, Krzysztof ;
Vollhardt, Dieter .
PHYSICAL REVIEW B, 2008, 77 (23)
[6]  
Caleffi F., 2018, THESIS
[7]   Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model [J].
Capogrosso-Sansone, B. ;
Prokof'ev, N. V. ;
Svistunov, B. V. .
PHYSICAL REVIEW B, 2007, 75 (13)
[8]   Monte Carlo study of the two-dimensional Bose-Hubbard model [J].
Capogrosso-Sansone, Barbara ;
Soeyler, Sebnem Guenes ;
Prokof'ev, Nikolay ;
Svistunov, Boris .
PHYSICAL REVIEW A, 2008, 77 (01)
[9]   Condensate statistics in one-dimensional interacting bose gases: Exact results [J].
Carusotto, I ;
Castin, Y .
PHYSICAL REVIEW LETTERS, 2003, 90 (03) :4-030401
[10]   Photonic materials in circuit quantum electrodynamics [J].
Carusotto, Iacopo ;
Houck, Andrew A. ;
Kollar, Alicia J. ;
Roushan, Pedram ;
Schuster, David I. ;
Simon, Jonathan .
NATURE PHYSICS, 2020, 16 (03) :268-279