Deterministic and stochastic 2D Navier-Stokes equations with anisotropic viscosity

被引:7
作者
Liang, Siyu [1 ,2 ,4 ]
Zhang, Ping [1 ,2 ]
Zhu, Rongchan [3 ,4 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
[4] Univ Bielefeld, Dept Math, D-33615 Bielefeld, Germany
关键词
D O I
10.1016/j.jde.2020.11.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate both deterministic and stochastic 2D Navier-Stokes equations with anisotropic viscosity. For the deterministic case, we prove the global well-posedness of the system with initial data in the anisotropic Sobolev space (H) over tilde (0,1). For the stochastic case, we obtain existence of the martingale solutions and pathwise uniqueness of the solutions, which imply existence of the probabilistically strong solution to this system by the Yamada-Watanabe Theorem. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:473 / 508
页数:36
相关论文
共 19 条
[1]  
[Anonymous], 1979, GEOPHYS FLUID DYNAMI
[2]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[3]   On stochastic modified 3D Navier-Stokes equations with anisotropic viscosity [J].
Bessaih, Hakima ;
Millet, Annie .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) :915-956
[4]   STOCHASTIC GEOMETRIC WAVE EQUATIONS WITH VALUES IN COMPACT RIEMANNIAN HOMOGENEOUS SPACES [J].
Brzezniak, Zdzislaw ;
Ondrejat, Martin .
ANNALS OF PROBABILITY, 2013, 41 (3B) :1938-1977
[5]  
Chemin J.Y., 2006, Mathematical geophysics: An introduction to rotating fluids and the NavierStokes equations, V32
[6]   On the global wellposedness to the 3-D incompressible anisotropic Navier- Stokes equations [J].
Chemin, Jean-Yves ;
Zhang, Ping .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 272 (02) :529-566
[7]   Fluids with anisotropic viscosity [J].
Chemin, JY ;
Desjardins, B ;
Gallagher, I ;
Grenier, E .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (02) :315-335
[8]  
Da Prato Giuseppe, 2014, Stochastic Equations in Infinite Dimensions, DOI DOI 10.1017/CBO9781107295513
[9]  
EKMAN V.W., 1905, ARK MAT ASTRON FYS, V2, DOI DOI 10.1016/0022-1236(71)90006-1
[10]   LOCAL AND GLOBAL EXISTENCE OF SMOOTH SOLUTIONS FOR THE STOCHASTIC EULER EQUATIONS WITH MULTIPLICATIVE NOISE [J].
Glatt-Holtz, Nathan E. ;
Vicol, Vlad C. .
ANNALS OF PROBABILITY, 2014, 42 (01) :80-145