Dirac Fermions in Borophene

被引:404
|
作者
Feng, Baojie [1 ]
Sugino, Osamu [1 ]
Liu, Ro-Ya [1 ]
Zhang, Jin [2 ]
Yukawa, Ryu [3 ]
Kawamura, Mitsuaki [1 ]
Iimori, Takushi [1 ]
Kim, Howon [1 ]
Hasegawa, Yukio [1 ]
Li, Hui [2 ]
Chen, Lan [2 ]
Wu, Kehui [2 ,4 ]
Kumigashira, Hiroshi [3 ]
Komori, Fumio [1 ]
Chiang, Tai-Chang [1 ,5 ]
Meng, Sheng [2 ,4 ]
Matsuda, Iwao [1 ]
机构
[1] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] High Energy Accelerator Res Org KEK, Inst Mat Struct Sci, Tsukuba, Ibaraki 3050801, Japan
[4] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[5] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA
基金
日本学术振兴会; 美国国家科学基金会; 日本科学技术振兴机构; 中国国家自然科学基金;
关键词
2-DIMENSIONAL BORON; GRAPHENE; SILICENE; GROWTH; RISE;
D O I
10.1103/PhysRevLett.118.096401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Honeycomb structures of group IV elements can host massless Dirac fermions with nontrivial Berry phases. Their potential for electronic applications has attracted great interest and spurred a broad search for new Dirac materials especially in monolayer structures. We present a detailed investigation of the beta(12) sheet, which is a borophene structure that can form spontaneously on a Ag(111) surface. Our tight-binding analysis revealed that the lattice of the beta(12) sheet could be decomposed into two triangular sublattices in a way similar to that for a honeycomb lattice, thereby hosting Dirac cones. Furthermore, each Dirac cone could be split by introducing periodic perturbations representing overlayer-substrate interactions. These unusual electronic structures were confirmed by angle-resolved photoemission spectroscopy and validated by first-principles calculations. Our results suggest monolayer boron as a new platform for realizing novel high-speed low-dissipation devices.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Cloning of Dirac fermions in graphene superlattices
    L. A. Ponomarenko
    R. V. Gorbachev
    G. L. Yu
    D. C. Elias
    R. Jalil
    A. A. Patel
    A. Mishchenko
    A. S. Mayorov
    C. R. Woods
    J. R. Wallbank
    M. Mucha-Kruczynski
    B. A. Piot
    M. Potemski
    I. V. Grigorieva
    K. S. Novoselov
    F. Guinea
    V. I. Fal’ko
    A. K. Geim
    Nature, 2013, 497 : 594 - 597
  • [42] Plasma oscillations of edge Dirac fermions
    V. A. Volkov
    I. V. Zagorodnev
    JETP Letters, 2013, 97 : 404 - 407
  • [43] Analogies for Dirac fermions physics in graphene
    Dragoman, Daniela
    Dragoman, Mircea
    SOLID-STATE ELECTRONICS, 2024, 211
  • [44] Dirac fermions in blue-phosphorus
    Li, Yuanchang
    Chen, Xiaobin
    2D MATERIALS, 2014, 1 (03):
  • [45] The dynamics of Dirac fermions on singular surfaces
    Martellini, M
    Sedrakyan, A
    Spreafico, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (18-19): : 2423 - 2429
  • [46] Higgs mode in a superfluid of Dirac fermions
    Tsuchiya, Shunji
    Ganesh, R.
    Nikuni, Tetsuro
    PHYSICAL REVIEW B, 2013, 88 (01)
  • [47] Weak localization of Dirac fermions in graphene
    Yan, Xin-Zhong
    Ting, C. S.
    PHYSICAL REVIEW LETTERS, 2008, 101 (12)
  • [48] Massive Dirac fermions from holography
    Plantz, N. W. M.
    Florez, F. Garcia
    Stoof, H. T. C.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (04):
  • [49] Cloning of Dirac fermions in graphene superlattices
    Ponomarenko, L. A.
    Gorbachev, R. V.
    Yu, G. L.
    Elias, D. C.
    Jalil, R.
    Patel, A. A.
    Mishchenko, A.
    Mayorov, A. S.
    Woods, C. R.
    Wallbank, J. R.
    Mucha-Kruczynski, M.
    Piot, B. A.
    Potemski, M.
    Grigorieva, I. V.
    Novoselov, K. S.
    Guinea, F.
    Fal'ko, V. I.
    Geim, A. K.
    NATURE, 2013, 497 (7451) : 594 - 597
  • [50] Dirac fermions in strong gravitational fields
    Obukhov, Yuri N.
    Silenko, Alexander J.
    Teryaev, Oleg V.
    PHYSICAL REVIEW D, 2011, 84 (02):