Dirac Fermions in Borophene

被引:406
作者
Feng, Baojie [1 ]
Sugino, Osamu [1 ]
Liu, Ro-Ya [1 ]
Zhang, Jin [2 ]
Yukawa, Ryu [3 ]
Kawamura, Mitsuaki [1 ]
Iimori, Takushi [1 ]
Kim, Howon [1 ]
Hasegawa, Yukio [1 ]
Li, Hui [2 ]
Chen, Lan [2 ]
Wu, Kehui [2 ,4 ]
Kumigashira, Hiroshi [3 ]
Komori, Fumio [1 ]
Chiang, Tai-Chang [1 ,5 ]
Meng, Sheng [2 ,4 ]
Matsuda, Iwao [1 ]
机构
[1] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] High Energy Accelerator Res Org KEK, Inst Mat Struct Sci, Tsukuba, Ibaraki 3050801, Japan
[4] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[5] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA
基金
美国国家科学基金会; 日本学术振兴会; 中国国家自然科学基金; 日本科学技术振兴机构;
关键词
2-DIMENSIONAL BORON; GRAPHENE; SILICENE; GROWTH; RISE;
D O I
10.1103/PhysRevLett.118.096401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Honeycomb structures of group IV elements can host massless Dirac fermions with nontrivial Berry phases. Their potential for electronic applications has attracted great interest and spurred a broad search for new Dirac materials especially in monolayer structures. We present a detailed investigation of the beta(12) sheet, which is a borophene structure that can form spontaneously on a Ag(111) surface. Our tight-binding analysis revealed that the lattice of the beta(12) sheet could be decomposed into two triangular sublattices in a way similar to that for a honeycomb lattice, thereby hosting Dirac cones. Furthermore, each Dirac cone could be split by introducing periodic perturbations representing overlayer-substrate interactions. These unusual electronic structures were confirmed by angle-resolved photoemission spectroscopy and validated by first-principles calculations. Our results suggest monolayer boron as a new platform for realizing novel high-speed low-dissipation devices.
引用
收藏
页数:6
相关论文
共 47 条
  • [1] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [2] Quasiparticle dynamics in graphene
    Bostwick, Aaron
    Ohta, Taisuke
    Seyller, Thomas
    Horn, Karsten
    Rotenberg, Eli
    [J]. NATURE PHYSICS, 2007, 3 (01) : 36 - 40
  • [3] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [4] de Gironcoli S., arXiv
  • [5] Continuous Germanene Layer on A(111)
    Derivaz, Mickael
    Dentel, Didier
    Stephan, Regis
    Hanf, Marie-Christine
    Mehdaoui, Ahmed
    Sonnet, Philippe
    Pirri, Carmelo
    [J]. NANO LETTERS, 2015, 15 (04) : 2510 - 2516
  • [6] Elias DC, 2011, NAT PHYS, V7, P701, DOI [10.1038/NPHYS2049, 10.1038/nphys2049]
  • [7] Electronic and mechanical properties of planar and tubular boron structures
    Evans, MH
    Joannopoulos, JD
    Pantelides, ST
    [J]. PHYSICAL REVIEW B, 2005, 72 (04)
  • [8] Valley-Polarized Metals and Quantum Anomalous Hall Effect in Silicene
    Ezawa, Motohiko
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (05)
  • [9] Feng B., 2016, Phys. Rev. B, V94, DOI DOI 10.1103/PHYSREVB.94.041408
  • [10] Feng BJ, 2016, NAT CHEM, V8, P564, DOI [10.1038/NCHEM.2491, 10.1038/nchem.2491]