Boundedness of Solutions of Conformable Fractional Equations of Perturbed Motion*

被引:1
作者
Martynyuk, A. A. [1 ]
Martynyuk-Chernienko, Yu. A. [1 ]
机构
[1] Natl Acad Sci Ukraine, SP Timoshenko Inst Mech, 3 Nesterov St, UA-03057 Kiev, Ukraine
关键词
nonlinear conformable fractional system of equations; method of integral inequalities; boundedness of solutions; DIFFERENTIAL-EQUATIONS; STABILITY ANALYSIS;
D O I
10.1007/s10778-020-01035-5
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The results of analyzing the boundedness of the solutions of nonlinear systems with conformable fractional derivative of the state vector are discussed. The solutions are estimated and their boundedness conditions are established using the method of integral inequalities. Systems subject to constant perturbations are considered as an example.
引用
收藏
页码:572 / 580
页数:9
相关论文
共 29 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]  
[Anonymous], 2012, LIAPUNOV THEORY INTE
[3]  
[Anonymous], 2010, World Scientific Series on Nonlinear Science, Series A
[4]  
Caputo M., 1969, Elasticita e Dissipazione
[5]   Fractional Order Control - A Tutorial [J].
Chen, YangQuan ;
Petras, Ivo ;
Xue, Dingyue .
2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, :1397-+
[6]  
Katugampola U. N., ARXIV14106535V2MATCA
[7]   A new definition of fractional derivative [J].
Khalil, R. ;
Al Horani, M. ;
Yousef, A. ;
Sababheh, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 :65-70
[8]  
Kilbas A., 2006, THEORY APPL FRACTION, DOI 10.1016/S0304-0208(06)80001-0
[9]  
Lakshmikantham V, 2015, SYST CONTROL-FOUND A, P1, DOI 10.1007/978-3-319-27200-9
[10]  
Lakshmikantham V., 2009, Theory of fractional dynamic systems