A Higher-Order Chimera Method for Finite Volume Schemes

被引:18
|
作者
Ramirez, Luis [1 ]
Nogueira, Xesus [1 ]
Ouro, Pablo [2 ]
Navarrina, Fermin [1 ]
Khelladi, Sofiane [3 ]
Colominas, Ignasi [1 ]
机构
[1] Univ A Coruna, Grp Numer Methods Engn, Campus Elvina, La Coruna 15071, Spain
[2] Cardiff Univ, Sch Engn, Hydroenvironm Res Ctr, Cardiff CF24 3AA, S Glam, Wales
[3] ParisTech, Lab Dynam Fluides Arts & Metiers, 151 Blvd Hop, F-75013 Paris, France
关键词
MOVING LEAST-SQUARES; IMMERSED BOUNDARY METHOD; OSCILLATING CIRCULAR-CYLINDER; LATTICE BOLTZMANN METHOD; DISCONTINUOUS GALERKIN; UNSTRUCTURED GRIDS; FLOWS; SIMULATION; ACCURACY; MESHES;
D O I
10.1007/s11831-017-9213-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work a higher-order accurate finite volume method for the resolution of the Euler/Navier-Stokes equations using Chimera grid techniques is presented. The formulation is based on the use of Moving Least Squares approximations in order to obtain higher-order accurate reconstruction and connectivity between the overlapped grids. The accuracy and performance of the proposed methodology is demonstrated by solving different benchmark problems.
引用
收藏
页码:691 / 706
页数:16
相关论文
共 50 条
  • [41] Higher-order finite volume methods for elliptic boundary value problems
    Chen, Zhongying
    Wu, Junfeng
    Xu, Yuesheng
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 37 (02) : 191 - 253
  • [42] Higher-order finite volume methods for elliptic boundary value problems
    Zhongying Chen
    Junfeng Wu
    Yuesheng Xu
    Advances in Computational Mathematics, 2012, 37 : 191 - 253
  • [43] A higher-order finite element method for the linearised Euler equations
    Hamiche, K.
    Gabard, G.
    Beriot, H.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2014) AND INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2014), 2014, : 1311 - 1325
  • [44] An Algebraic Multigrid Method for Higher-order Finite Element Discretizations
    S. Shu
    D. Sun
    J. Xu
    Computing, 2006, 77 : 347 - 377
  • [45] An algebraic multigrid method for higher-order finite element discretizations
    Shu, S.
    Sun, D.
    Xu, J.
    COMPUTING, 2006, 77 (04) : 347 - 377
  • [46] Higher Order Compact Implicit Finite Volume Schemes for Scalar Conservation Laws
    Zakova, Dagmar
    Frolkovic, Peter
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL II, HYP2022, 2024, 35 : 221 - 231
  • [47] HIGHER-ORDER MONOTONIC CONVECTIVE DIFFERENCE SCHEMES
    FORESTER, CK
    JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (01) : 1 - 22
  • [48] Recursive marginal quantization of higher-order schemes
    McWalter, T. A.
    Rudd, R.
    Kienitz, J.
    Platen, E.
    QUANTITATIVE FINANCE, 2018, 18 (04) : 693 - 706
  • [49] HIGHER-ORDER GODUNOV SCHEMES FOR ISOTHERMAL HYDRODYNAMICS
    BALSARA, DS
    ASTROPHYSICAL JOURNAL, 1994, 420 (01): : 197 - 212
  • [50] CONSTRUCTION OF HIGHER-ORDER SYMPLECTIC SCHEMES BY COMPOSITION
    QIN, MZ
    ZHU, WJ
    COMPUTING, 1992, 47 (3-4) : 309 - 321