The role of entropy in topological quantum error correction

被引:18
作者
Beverland, Michael E. [1 ]
Brown, Benjamin J. [2 ,3 ]
Kastoryano, Michael J. [2 ,4 ]
Marolleau, Quentin [5 ]
机构
[1] Microsoft Quantum, Redmond, WA 98052 USA
[2] Niels Bohr Int Acad, Niels Bohr Inst, Copenhagen, Denmark
[3] Univ Sydney, Sch Phys, Ctr Engn Quantum Syst, Sydney, NSW 2006, Australia
[4] Univ Cologne, Inst Theoret Phys, Cologne, Germany
[5] Univ Paris Saclay, CNRS, Grad Sch, Lab Charles Fabry,Inst Opt, F-91120 Palaiseau, France
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2019年
基金
澳大利亚研究理事会;
关键词
quantum computation; quantum information; COMPUTATION; CODES;
D O I
10.1088/1742-5468/ab25de
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The performance of a quantum error-correction process is determined by the likelihood that a random configuration of errors introduced to the system will lead to the corruption of encoded logical information. In this work we compare two different variants of the surface code with a comparable number of qubits: the surface code defined on a square lattice and the same model on a lattice that is rotated by pi/4. This seemingly innocuous change increases the distance of the code by a factor of root 2. However, as we show, this gain can come at the expense of significantly increasing the number of different failure mechanisms that are likely to occur. We use a number of different methods to explore this tradeoff over a large range of parameter space under an independent and identically distributed noise model. We rigorously analyze the leading order performance for low error rates, where the larger distance code performs best for all system sizes. Using an analytical model and Monte Carlo sampling, we find that this improvement persists for fixed sub-threshold error rates and large system sizes, but that the improvement vanishes close to threshold. Remarkably, intensive numerics uncover a region of system sizes and sub-threshold error rates where the square lattice surface code marginally outperforms the rotated model.
引用
收藏
页数:40
相关论文
共 63 条
[1]   Error tolerance of topological codes with independent bit-flip and measurement errors [J].
Andrist, Ruben S. ;
Katzgraber, Helmut G. ;
Bombin, H. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW A, 2016, 94 (01)
[2]   Error thresholds for Abelian quantum double models: Increasing the bit-flip stability of topological quantum memory [J].
Andrist, Ruben S. ;
Wootton, James R. ;
Katzgraber, Helmut G. .
PHYSICAL REVIEW A, 2015, 91 (04)
[3]   Optimal error correction in topological subsystem codes [J].
Andrist, Ruben S. ;
Bombin, H. ;
Katzgraber, Helmut G. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW A, 2012, 85 (05)
[4]   Tricolored lattice gauge theory with randomness: fault tolerance in topological color codes [J].
Andrist, Ruben S. ;
Katzgraber, Helmut G. ;
Bombin, H. ;
Martin-Delgado, M. A. .
NEW JOURNAL OF PHYSICS, 2011, 13
[5]  
[Anonymous], 2011, ARXIV11085738
[6]  
[Anonymous], 2013, ARXIV13100863
[7]   Fast decoders for qudit topological codes [J].
Anwar, Hussain ;
Brown, Benjamin J. ;
Campbell, Earl T. ;
Browne, Dan E. .
NEW JOURNAL OF PHYSICS, 2014, 16
[8]   Operator quantum error-correcting subsystems for self-correcting quantum memories [J].
Bacon, D .
PHYSICAL REVIEW A, 2006, 73 (01)
[9]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[10]   EFFICIENT ESTIMATION OF FREE-ENERGY DIFFERENCES FROM MONTE-CARLO DATA [J].
BENNETT, CH .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (02) :245-268