Atmosphere/mantle coupling and feedbacks on Venus

被引:73
作者
Gillmann, Cedric [1 ]
Tackley, Paul [1 ]
机构
[1] ETH, Inst Geophys, Dept Earth Sci, CH-8093 Zurich, Switzerland
关键词
GLOBAL HYBRID SIMULATION; SOLAR-WIND INTERACTION; MANTLE CONVECTION; HYDRODYNAMIC ESCAPE; THERMAL EVOLUTION; MARTIAN MANTLE; COMPOSITIONAL EVOLUTION; EPISODIC SUBDUCTION; MASS FRACTIONATION; TERRESTRIAL PLANET;
D O I
10.1002/2013JE004505
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We investigate the coupled evolution of the atmosphere and mantle on Venus. Here we focus on mechanisms that deplete or replenish the atmosphere: atmospheric escape to space and volcanic degassing of the mantle. These processes are linked to obtain a coupled model of mantle convection and atmospheric evolution, including feedback of the atmosphere on the mantle via the surface temperature. During early atmospheric evolution, hydrodynamic escape is dominant, while for later evolution we focus on nonthermal escape, as observed by the Analyzer of Space Plasma and Energetic Atoms instrument on the Venus Express Mission. The atmosphere is replenished by volcanic degassing from the mantle, using mantle convection simulations based on those of Armann and Tackley [2012], and include episodic lithospheric overturn. The evolving surface temperature is calculated from the amount of CO2 and water in the atmosphere using a gray radiative-convective atmosphere model. This surface temperature in turn acts as a boundary condition for the mantle convection model. We obtain a Venus-like behavior (episodic lid) for the solid planet and an atmospheric evolution leading to the present conditions. CO2 pressure is unlikely to vary much over the history of the planet, with only a 0.25-20% postmagma-ocean buildup. In contrast, atmospheric water vapor pressure is strongly sensitive to volcanic activity, leading to variations in surface temperatures of up to 200 K, which have an effect on volcanic activity and mantle convection. Low surface temperatures trigger a mobile lid regime that stops once surface temperatures rise again, making way to stagnant lid convection that insulates the mantle.
引用
收藏
页码:1189 / 1217
页数:29
相关论文
共 135 条
[1]  
ABE Y, 1988, J ATMOS SCI, V45, P3081, DOI 10.1175/1520-0469(1988)045<3081:EOAIGH>2.0.CO
[2]  
2
[3]   IMPACT EROSION OF TERRESTRIAL PLANETARY-ATMOSPHERES [J].
AHRENS, TJ .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 1993, 21 :525-555
[4]  
AHRENS TJ, 1981, ADV SPACE RES, V1, P177
[5]   Tectonic effects of climate change on Venus [J].
Anderson, FS ;
Smrekar, SE .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 1999, 104 (E12) :30743-30756
[6]  
[Anonymous], 2002, GEOPHYS J INT
[7]   Simulating the thermochemical magmatic and tectonic evolution of Venus's mantle and lithosphere: Two-dimensional models [J].
Armann, Marina ;
Tackley, Paul J. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2012, 117
[8]   SURFACE MODIFICATION OF VENUS AS INFERRED FROM MAGELLAN OBSERVATIONS OF PLAINS [J].
ARVIDSON, RE ;
GREELEY, R ;
MALIN, MC ;
SAUNDERS, RS ;
IZENBERG, N ;
PLAUT, JJ ;
STOFAN, ER ;
SHEPARD, MK .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 1992, 97 (E8) :13303-13317
[9]   The analyser of space plasmas and energetic atoms (ASPERA-4) for the Venus express mission [J].
Barabash, S. ;
Sauvaud, J.-A. ;
Gunell, H. ;
Andersson, H. ;
Grigoriev, A. ;
Brinkfeldt, K. ;
Holinstroem, M. ;
Lundin, R. ;
Yamauchi, M. ;
Asamura, K. ;
Baumjohann, W. ;
Zhang, T. L. ;
Coates, A. J. ;
Linder, D. R. ;
Kataria, D. O. ;
Curtis, C. C. ;
Hsieh, K. C. ;
Sandel, B. R. ;
Fedorov, A. ;
Mazelle, C. ;
Thocaven, J. J. ;
Grande, M. ;
Koskinen, Hannu E. J. ;
Kallio, E. ;
Saeles, T. ;
Riihela, P. ;
Kozyra, J. ;
Krupp, N. ;
Woch, J. ;
Luhmann, J. ;
McKenna-Lawlor, S. ;
Orsini, S. ;
Cerulli-Irelli, R. ;
Mura, M. ;
Milillo, M. ;
Maggi, M. ;
Roelof, E. ;
Brandt, P. ;
Russell, C. T. ;
Szego, K. ;
Winningham, J. D. ;
Frahm, R. A. ;
Scherrer, J. ;
Sharber, J. R. ;
Wurz, P. ;
Bochsler, P. .
PLANETARY AND SPACE SCIENCE, 2007, 55 (12) :1772-1792
[10]  
Bauer S. J., 2004, Planetary Aeronomy: Atmosphere Environments in Planetary Systems