Integrating genome-wide association studies and gene expression data highlights dysregulated multiple sclerosis risk pathways

被引:46
|
作者
Liu, Guiyou [1 ]
Zhang, Fang [2 ]
Jiang, Yongshuai [4 ]
Hu, Yang [1 ]
Gong, Zhongying [5 ]
Liu, Shoufeng [6 ]
Chen, Xiuju [7 ]
Jiang, Qinghua [1 ]
Hao, Junwei [2 ,3 ]
机构
[1] Harbin Inst Technol, Sch Life Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
[2] Tianjin Med Univ, Gen Hosp, Dept Neurol, Tianjin 300052, Peoples R China
[3] Tianjin Med Univ, Gen Hosp, Tianjin Neurol Inst, Tianjin 300052, Peoples R China
[4] Harbin Med Univ, Coll Bioinformat Sci & Technol, Harbin, Peoples R China
[5] Tianjin First Cent Hosp, Dept Neurol, Tianjin, Peoples R China
[6] Tianjin HuanHu Hosp, Dept Neurol, Tianjin, Peoples R China
[7] Tianjin NanKai Hosp, Dept Neurol, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiple sclerosis; pathway analysis; genome-wide association studies; gene expression; gene-based test; immune pathways; MODEL;
D O I
10.1177/1352458516649038
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Much effort has been expended on identifying the genetic determinants of multiple sclerosis (MS). Existing large-scale genome-wide association study (GWAS) datasets provide strong support for using pathway and network-based analysis methods to investigate the mechanisms underlying MS. However, no shared genetic pathways have been identified to date. Objective: We hypothesize that shared genetic pathways may indeed exist in different MS-GWAS datasets. Methods: Here, we report results from a three-stage analysis of GWAS and expression datasets. In stage 1, we conducted multiple pathway analyses of two MS-GWAS datasets. In stage 2, we performed a candidate pathway analysis of the large-scale MS-GWAS dataset. In stage 3, we performed a pathway analysis using the dysregulated MS gene list from seven human MS case-control expression datasets. Results: In stage 1, we identified 15 shared pathways. In stage 2, we successfully replicated 14 of these 15 significant pathways. In stage 3, we found that dysregulated MS genes were significantly enriched in 10 of 15 MS risk pathways identified in stages 1 and 2. Conclusion: We report shared genetic pathways in different MS-GWAS datasets and highlight some new MS risk pathways. Our findings provide new insights on the genetic determinants of MS.
引用
收藏
页码:205 / 212
页数:8
相关论文
共 50 条
  • [21] Insight from genome-wide association studies in rheumatoid arthritis and multiple sclerosis
    Suzuki, Akari
    Kochi, Yuta
    Okada, Yukinari
    Yamamoto, Kazuhiko
    FEBS LETTERS, 2011, 585 (23) : 3627 - 3632
  • [22] Genome-wide significant association with seven novel multiple sclerosis risk loci
    Lill, Christina M.
    Luessi, Felix
    Alcina, Antonio
    Sokolova, Ekaterina A.
    Ugidos, Nerea
    de la Hera, Belen
    Guillot-Noel, Lena
    Malhotra, Sunny
    Reinthaler, Eva
    Schjeide, Brit-Maren M.
    Mescheriakova, Julia Y.
    Mashychev, Andriy
    Wohlers, Inken
    Akkad, Denis A.
    Aktas, Orhan
    Alloza, Iraide
    Antigueedad, Alfredo
    Arroyo, Rafa
    Astobiza, Ianire
    Blaschke, Paul
    Boyko, Alexei N.
    Buttmann, Mathias
    Chan, Andrew
    Doerner, Thomas
    Epplen, Joerg T.
    Favorova, Olga O.
    Fedetz, Maria
    Fernandez, Oscar
    Garcia-Martinez, Angel
    Gerdes, Lisa-Ann
    Graetz, Christiane
    Hartung, Hans-Peter
    Hoffjan, Sabine
    Izquierdo, Guillermo
    Korobko, Denis S.
    Kroner, Antje
    Kubisch, Christian
    Kuempfel, Tania
    Leyva, Laura
    Lohse, Peter
    Malkova, Nadezhda A.
    Montalban, Xavier
    Popova, Ekaterina V.
    Rieckmann, Peter
    Rozhdestvenskii, Alexei S.
    Schmied, Christiane
    Smagina, Inna V.
    Tsareva, Ekaterina Y.
    Winkelmann, Alexander
    Zettl, Uwe K.
    JOURNAL OF MEDICAL GENETICS, 2015, 52 (12) : 848 - 855
  • [23] Integrative pathway analysis of genome-wide association studies and gene expression data in prostate cancer
    Jia, Peilin
    Liu, Yang
    Zhao, Zhongming
    BMC SYSTEMS BIOLOGY, 2012, 6
  • [24] Genome-wide association studies in amyotrophic lateral sclerosis
    Dupre, Nicolas
    Valdmanis, Paul
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2009, 17 (02) : 137 - 138
  • [25] Integrating genome-wide association study and expression quantitative trait loci data identifies multiple genes and gene set associated with neuroticism
    Fan, Qianrui
    Wang, Wenyu
    Hao, Jingcan
    He, Awen
    Wen, Yan
    Guo, Xiong
    Wu, Cuiyan
    Ning, Yujie
    Wang, Xi
    Wang, Sen
    Zhang, Feng
    PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2017, 78 : 149 - 152
  • [26] Analysing biological pathways in genome-wide association studies
    Wang, Kai
    Li, Mingyao
    Hakonarson, Hakon
    NATURE REVIEWS GENETICS, 2010, 11 (12) : 843 - 854
  • [27] Analysing biological pathways in genome-wide association studies
    Kai Wang
    Mingyao Li
    Hakon Hakonarson
    Nature Reviews Genetics, 2010, 11 : 843 - 854
  • [28] Genome-wide significant risk genes for multiple sclerosis
    Hoppenbrouwers, I.
    Aulchenko, Y.
    Janssens, C.
    Ramagopalan, S.
    Kayser, M.
    Ebers, G.
    Oostra, B.
    van Duijn, C.
    Hintzen, R.
    MULTIPLE SCLEROSIS, 2009, 15 (09): : S186 - S186
  • [29] The Effect of Single Nucleotide Polymorphisms from Genome Wide Association Studies in Multiple Sclerosis on Gene Expression
    Handel, Adam E.
    Handunnetthi, Lahiru
    Berlanga, Antonio J.
    Watson, Corey T.
    Morahan, Julia M.
    Ramagopalan, Sreeram V.
    PLOS ONE, 2010, 5 (04):
  • [30] Making Sense of Genome-Wide Association Studies Integrating Genetic Variation With Gene Expression to Derive Functional Mechanisms Underlying Disease Risk
    Chen, Hsiao-Huei
    Stewart, Alexandre F. R.
    CIRCULATION, 2015, 131 (06) : 519 - 521