A membrane aerated biofilm reactor for sulfide control from anaerobically treated wastewater

被引:16
作者
Camiloti, Priscila Rosseto [1 ]
Valdes, Freddy [2 ]
Delforno, Tiago Palladino [3 ]
Bartacek, Jan [4 ]
Zaiat, Marcelo [1 ]
Jeison, David [5 ]
机构
[1] Univ Sao Paulo, Biol Proc Lab, Ctr Res Dev & Innovat Environm Engn, Sao Carlos Sch Engn EESC, Sao Carlos, SP, Brazil
[2] Univ La Frontera, Nat Resources Dept, Temuco, Chile
[3] Campinas Univ UNICAMP, Microbial Resources Div, Res Ctr Chem Biol & Agr CPQBA, CP 6171, BR-13081970 Campinas, SP, Brazil
[4] Inst Chem Technol, Dept Water Technol & Environm Engn, Prague, Czech Republic
[5] Pontificia Univ Catolica Valparaiso, Escuela Ingn Bioquim, Valparaiso, Chile
基金
巴西圣保罗研究基金会;
关键词
Sulfide oxidation; elemental sulfur; microaeration; silicon membrane; high-throughput sequencing; ORGANIC-CARBON REMOVAL; HYDROGEN-SULFIDE; PERMEABLE MEMBRANES; SP-NOV; SULFUR; NITRIFICATION; MICROAERATION; OXYGENATION; OXIDATION; RNA;
D O I
10.1080/09593330.2018.1441329
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A upflow anaerobic sludge blanket reactor was operated combined to a membrane aerated biofilm reactor for sulfate removal and for elemental sulfur reclamation. A commercial silicon tube was used as an oxygen delivery diffuser. The process achieved high rates of sulfide removal from the liquid phase (90%). The hydrogen sulfide removal was influenced by the pH value and at pH value of 7.5, 98% of the H2S was removed. The elemental sulfur was observed inside the membrane, with content in the biomass of 21%. Through the massive sequencing of the samples, the microbial community diversity and the stratification of biomass inside the silicon tube was demonstrated, confirming the presence of sulfide-oxidizing bacteria on the membrane wall. The most important genera found related to the sulfur cycle were Sulfuricurvum, Geovibrio, Flexispira and Sulforospirillum.
引用
收藏
页码:2354 / 2363
页数:10
相关论文
共 40 条
  • [1] [Anonymous], 2005, Standard methods for the examination of water and waste- water
  • [2] Brindle K, 1996, BIOTECHNOL BIOENG, V49, P601, DOI 10.1002/(SICI)1097-0290(19960320)49:6<601::AID-BIT1>3.0.CO
  • [3] 2-S
  • [4] Nitrification and oxygen utilisation in a membrane aeration bioreactor
    Brindle, K
    Stephenson, T
    Semmens, MJ
    [J]. JOURNAL OF MEMBRANE SCIENCE, 1998, 144 (1-2) : 197 - 209
  • [5] OPTIMIZATION OF SULFUR PRODUCTION IN A BIOTECHNOLOGICAL SULFIDE-REMOVING REACTOR
    BUISMAN, CJN
    GERAATS, BG
    IJSPEERT, P
    LETTINGA, G
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 1990, 35 (01) : 50 - 56
  • [6] Sulfur Recovery from Wastewater Using a Micro-aerobic External Silicone Membrane Reactor (ESMR)
    Camiloti, P. R.
    Oliveira, G. H. D.
    Zaiat, M.
    [J]. WATER AIR AND SOIL POLLUTION, 2016, 227 (01)
  • [7] PyNAST: a flexible tool for aligning sequences to a template alignment
    Caporaso, J. Gregory
    Bittinger, Kyle
    Bushman, Frederic D.
    DeSantis, Todd Z.
    Andersen, Gary L.
    Knight, Rob
    [J]. BIOINFORMATICS, 2010, 26 (02) : 266 - 267
  • [8] Casey E, 1999, BIOTECHNOL BIOENG, V62, P183, DOI 10.1002/(SICI)1097-0290(19990120)62:2<183::AID-BIT8>3.0.CO
  • [9] 2-L
  • [10] Review of membrane aerated biofilm reactors
    Casey, E
    Glennon, B
    Hamer, G
    [J]. RESOURCES CONSERVATION AND RECYCLING, 1999, 27 (1-2) : 203 - 215