A membrane aerated biofilm reactor for sulfide control from anaerobically treated wastewater

被引:16
作者
Camiloti, Priscila Rosseto [1 ]
Valdes, Freddy [2 ]
Delforno, Tiago Palladino [3 ]
Bartacek, Jan [4 ]
Zaiat, Marcelo [1 ]
Jeison, David [5 ]
机构
[1] Univ Sao Paulo, Biol Proc Lab, Ctr Res Dev & Innovat Environm Engn, Sao Carlos Sch Engn EESC, Sao Carlos, SP, Brazil
[2] Univ La Frontera, Nat Resources Dept, Temuco, Chile
[3] Campinas Univ UNICAMP, Microbial Resources Div, Res Ctr Chem Biol & Agr CPQBA, CP 6171, BR-13081970 Campinas, SP, Brazil
[4] Inst Chem Technol, Dept Water Technol & Environm Engn, Prague, Czech Republic
[5] Pontificia Univ Catolica Valparaiso, Escuela Ingn Bioquim, Valparaiso, Chile
基金
巴西圣保罗研究基金会;
关键词
Sulfide oxidation; elemental sulfur; microaeration; silicon membrane; high-throughput sequencing; ORGANIC-CARBON REMOVAL; HYDROGEN-SULFIDE; PERMEABLE MEMBRANES; SP-NOV; SULFUR; NITRIFICATION; MICROAERATION; OXYGENATION; OXIDATION; RNA;
D O I
10.1080/09593330.2018.1441329
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A upflow anaerobic sludge blanket reactor was operated combined to a membrane aerated biofilm reactor for sulfate removal and for elemental sulfur reclamation. A commercial silicon tube was used as an oxygen delivery diffuser. The process achieved high rates of sulfide removal from the liquid phase (90%). The hydrogen sulfide removal was influenced by the pH value and at pH value of 7.5, 98% of the H2S was removed. The elemental sulfur was observed inside the membrane, with content in the biomass of 21%. Through the massive sequencing of the samples, the microbial community diversity and the stratification of biomass inside the silicon tube was demonstrated, confirming the presence of sulfide-oxidizing bacteria on the membrane wall. The most important genera found related to the sulfur cycle were Sulfuricurvum, Geovibrio, Flexispira and Sulforospirillum.
引用
收藏
页码:2354 / 2363
页数:10
相关论文
共 40 条
[1]  
[Anonymous], 2005, Standard methods for the examination of water and waste- water
[2]  
Brindle K, 1996, BIOTECHNOL BIOENG, V49, P601, DOI 10.1002/(SICI)1097-0290(19960320)49:6<601::AID-BIT1>3.0.CO
[3]  
2-S
[4]   Nitrification and oxygen utilisation in a membrane aeration bioreactor [J].
Brindle, K ;
Stephenson, T ;
Semmens, MJ .
JOURNAL OF MEMBRANE SCIENCE, 1998, 144 (1-2) :197-209
[5]   OPTIMIZATION OF SULFUR PRODUCTION IN A BIOTECHNOLOGICAL SULFIDE-REMOVING REACTOR [J].
BUISMAN, CJN ;
GERAATS, BG ;
IJSPEERT, P ;
LETTINGA, G .
BIOTECHNOLOGY AND BIOENGINEERING, 1990, 35 (01) :50-56
[6]   Sulfur Recovery from Wastewater Using a Micro-aerobic External Silicone Membrane Reactor (ESMR) [J].
Camiloti, P. R. ;
Oliveira, G. H. D. ;
Zaiat, M. .
WATER AIR AND SOIL POLLUTION, 2016, 227 (01)
[7]   PyNAST: a flexible tool for aligning sequences to a template alignment [J].
Caporaso, J. Gregory ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
DeSantis, Todd Z. ;
Andersen, Gary L. ;
Knight, Rob .
BIOINFORMATICS, 2010, 26 (02) :266-267
[8]  
Casey E, 1999, BIOTECHNOL BIOENG, V62, P183, DOI 10.1002/(SICI)1097-0290(19990120)62:2<183::AID-BIT8>3.0.CO
[9]  
2-L
[10]   Review of membrane aerated biofilm reactors [J].
Casey, E ;
Glennon, B ;
Hamer, G .
RESOURCES CONSERVATION AND RECYCLING, 1999, 27 (1-2) :203-215