Ion implanted substitutionally dispersed Au in TiO2 nanostructures for efficient and stable dye sensitized solar cells

被引:10
作者
Bhullar, Viplove [1 ]
Devi, Devarani [2 ]
Singh, Fouran [2 ]
Chopra, Sundeep [2 ]
Debnath, Anil Krishna [3 ]
Aswal, Dinesh Kumar [4 ]
Mahajan, Aman [1 ]
机构
[1] Guru Nanak Dev Univ, Dept Phys, Amritsar 143005, Punjab, India
[2] Inter Univ Accelerator Ctr, New Delhi 1100067, India
[3] Bhabha Atom Res Ctr, Tech Phys Div, Mumbai 400085, Maharashtra, India
[4] Bhabha Atom Res Ctr, Hlth Safety & Environm Grp, Mumbai 400085, Maharashtra, India
关键词
Nanofibers; Substitutional doping; Interstitial doping; TiO2; Dye sensitized solar cells; PHOTOANODE; NANOTUBES; ELECTRODE; ARRAYS;
D O I
10.1016/j.optmat.2022.112800
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Various optical and electrical properties of noble metal doped TiO2 nanomaterials are found to vary remarkably with change in concentration and nature of doping. In the present work, ion implantation technique has been employed for generating substitutional and interstitial Au doping in TiO2 nanoparticle-nanofiber (NP-NF) composites. Experimentally, the presence of Au at substitutional and interstitial sites of TiO2 was detected through X-ray photoelectron spectroscopy. Depth profiling of implanted Au ions confirmed the presence of Au upto 70 nm. From the theoretical simulations, it was realized that substitutional Au doping results in higher strain and lower band gap contrary to pristine TiO2 and interstitial Au doped TiO2. Finally, the Dye sensitized solar cell (DSSC) prepared with substitutional doping was found to be 23.9% more efficient than interstitial Au based DSSC owing to enhanced light harvesting, higher fermi level and minimal recombinations as corroborated from current density-voltage and electrochemical impedance spectroscopy studies.
引用
收藏
页数:8
相关论文
共 36 条
[1]  
[Anonymous], 2007, AR4 Climate Change 2007: The Physical Science Basis - IPCC
[2]   RAMAN-SPECTRA OF TITANIUM-DIOXIDE [J].
BALACHANDRAN, U ;
EROR, NG .
JOURNAL OF SOLID STATE CHEMISTRY, 1982, 42 (03) :276-282
[3]   Size modeling of TiO2 nanofibers for efficient TiO2 sensitized mesoscopic solar cells [J].
Bhullar, Viplove ;
Sardana, Sagar ;
Mahajan, Aman .
SOLAR ENERGY, 2021, 230 :177-185
[4]   TiO2 waveguides thin films prepared by sol-gel method on glass substrates with and without ZnO underlayer [J].
Bouachiba, Y. ;
Taabouche, A. ;
Bouabellou, A. ;
Hanini, F. ;
Sedrati, C. ;
Merabti, H. .
MATERIALS SCIENCE-POLAND, 2020, 38 (03) :381-385
[5]   Metal hollow sphere electrocatalysts [J].
Chattopadhyay, Jayeeta ;
Pathak, Tara Sankar ;
Pak, Daewon ;
Srivastava, Rohit .
KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2016, 33 (05) :1514-1529
[6]  
Dong Y., 2019, RENEW ENERG
[7]   An attempt to apply the inelastic thermal spike model to surface modifications of CaF2 induced by highly charged ions: comparison to swift heavy ions effects and extension to some others material [J].
Dufour, C. ;
Khomrenkov, V. ;
Wang, Y. Y. ;
Wang, Z. G. ;
Aumayr, F. ;
Toulemonde, M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (09)
[8]   Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy [J].
Fabregat-Santiago, Francisco ;
Garcia-Belmonte, Germa ;
Mora-Sero, Ivan ;
Bisquert, Juan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (20) :9083-9118
[9]   Facile formation of mesoporous structured mixed-phase (anatase/rutile) TiO2 with enhanced visible light photocatalytic activity [J].
Fu, Weiwei ;
Li, Guode ;
Wang, Yu ;
Zeng, Shangjing ;
Yan, Zhuojun ;
Wang, Junwei ;
Xin, Shigang ;
Zhang, Lei ;
Wu, Shiwei ;
Zhang, Zongtao .
CHEMICAL COMMUNICATIONS, 2018, 54 (01) :58-61
[10]   Influence of one-dimensional TiO2 nanotube on interfacial electron transfer in dye-sensitized solar cells: Insights from theoretical investigation [J].
Gao, Xin ;
Kong, Chui-peng ;
Jia, Ran ;
Jian, Wei ;
Wang, Jian ;
Bai, Fu-quan ;
Zhang, Hong-xing .
SOLAR ENERGY, 2018, 176 :545-555