Nucleon form factors in dispersively improved chiral effective field theory. II. Electromagnetic form factors

被引:23
作者
Alarcon, J. M. [1 ]
Weiss, C. [1 ]
机构
[1] Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA
关键词
PERTURBATION-THEORY; LOW Q(2); PION; PROTON; SCATTERING; PHENOMENOLOGY; DENSITIES;
D O I
10.1103/PhysRevC.97.055203
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method combining chiral effective field theory (chi EFT) and dispersion analysis. The spectral functions on the two-pion cut at t > 4M(pi)(2) are constructed using the elastic unitarity relation and an N/D representation. chi EFT is used to calculate the real functions J(+/-)(1) (t) = f(+/-)(1) (t)/F pi (t) (ratios of the complex pi pi -> N (N) over bar partial-wave amplitudes and the timelike pion FF), which are free of pi pi rescattering. Rescattering effects are included through the empirical timelike pion FF vertical bar F pi(t)vertical bar(2). The method allows us to compute the isovector EM spectral functions up to t similar to 1 GeV2 with controlled accuracy (leading order, next-to-leading order, and partial next-to-next-to-leading order). With the spectral functions we calculate the isovector nucleon EM FFs and their derivatives at t = 0 (EM radii, moments) using subtracted dispersion relations. We predict the values of higher FF derivatives, which are not affected by higher-order chiral corrections and are obtained almost parameter-free in our approach, and explain their collective behavior. We estimate the individual proton and neutron FFs by adding an empirical parametrization of the isoscalar sector. Excellent agreement with the present low-Q(2) FF data is achieved up to similar to 0.5 GeV2 for G(E), and up to similar to 0.2 GeV2 for G(M). Our results can be used to guide the analysis of low-Q(2) elastic scattering data and the extraction of the proton charge radius.
引用
收藏
页数:13
相关论文
共 70 条
[1]   Nucleon form factors in dispersively improved chiral effective field theory: Scalar form factor [J].
Alarcon, J. M. ;
Weiss, C. .
PHYSICAL REVIEW C, 2017, 96 (05)
[2]   Peripheral transverse densities of the baryon octet from chiral effective field theory and dispersion analysis [J].
Alarcon, J. M. ;
Blin, A. N. Hiller ;
Vicente Vacas, M. J. ;
Weiss, C. .
NUCLEAR PHYSICS A, 2017, 964 :18-54
[3]   The strangeness content of the nucleon from effective field theory and phenomenology [J].
Alarcon, J. M. ;
Geng, L. S. ;
Camalich, J. Martin ;
Oller, J. A. .
PHYSICS LETTERS B, 2014, 730 :342-346
[4]   Improved description of the πN-scattering phenomenology at low energies in covariant baryon chiral perturbation theory [J].
Alarcon, J. M. ;
Camalich, J. Martin ;
Oller, J. A. .
ANNALS OF PHYSICS, 2013, 336 :413-461
[5]   Chiral representation of the πN scattering amplitude and the pion-nucleon sigma term [J].
Alarcon, J. M. ;
Camalich, J. Martin ;
Oller, J. A. .
PHYSICAL REVIEW D, 2012, 85 (05)
[6]  
Alarcon J. M., UNPUB
[7]   Chiral perturbation theory of muonic-hydrogen Lamb shift: polarizability contribution [J].
Alarcon, Jose Manuel ;
Lensky, Vadim ;
Pascalutsa, Vladimir .
EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (04) :1-10
[8]   Nucleon electromagnetic form factors using lattice simulations at the physical point [J].
Alexandrou, C. ;
Constantinou, M. ;
Hadjiyiannakou, K. ;
Jansen, K. ;
Kallidonis, Ch. ;
Koutsou, G. ;
Aviles-Casco, A. Vaquero .
PHYSICAL REVIEW D, 2017, 96 (03)
[9]  
[Anonymous], 2017, J PHYS SOC JPN C P
[10]   ELECTROMAGNETIC PION FORM-FACTOR IN THE TIMELIKE REGION [J].
BARKOV, LM ;
CHILINGAROV, AG ;
EIDELMAN, SI ;
KHAZIN, BI ;
LELCHUK, MY ;
OKHAPKIN, VS ;
PAKHTUSOVA, EV ;
REDIN, SI ;
RYSKULOV, NM ;
SHATUNOV, YM ;
SHEKHTMAN, AI ;
SHWARTZ, BA ;
SIDOROV, VA ;
SKRINSKY, AN ;
SMAKHTIN, VP ;
SOLODOV, EP .
NUCLEAR PHYSICS B, 1985, 256 (03) :365-384