Finite difference time domain approach to metamaterial waveguide for IR application as cavity resonator

被引:6
作者
Sahu, Sanjay Kumar [1 ]
Sahu, Sudhakar [2 ]
Palai, G. [1 ]
机构
[1] Gandhi Inst Technol Adv, Bhubaneswar 752054, Orissa, India
[2] KIIT Univ, Bhubaneswar, Orissa, India
来源
OPTIK | 2017年 / 130卷
关键词
Metamaterial waveguide; Electric field; Power; SILICON GRATING STRUCTURE; REALIZATION; TEMPERATURE; SIMULATION; FREQUENCY; LIGHT;
D O I
10.1016/j.ijleo.2016.11.016
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We in this paper introduce three layers of metamaterial waveguide for an application as cavity resonator where structure deals with IR region of the electromagnetic spectrum, which ranges from 1200 nm to 1775 nm. Finite difference time domain method shows that waveguide predicts unusual behaviour with respect to above spectrum. Simulation result confirms that feeble power is realized at lower and higher wavelength however same device deals with massive power at middle range regime. For example; power attains the order of 10443 at wavelength, 1550 nm. Finally, this paper suggests that above three layers of metamaterial waveguide may be a good candidate for cavity resonator. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:872 / 876
页数:5
相关论文
共 34 条
[1]  
Achary J. S. N., 2014, J TELECOMMUN SWITCHI, V1, P1
[2]  
Bozorgnia Y., 2004, Earthquake Engineering: From Engineering Seismology to Performance based Engineering
[3]   Efficient semiconductor grating SOI structure for nanophotonic application [J].
Dalai, P. K. ;
Sarkar, P. ;
Palai, G. .
OPTIK, 2016, 127 (22) :10632-10636
[4]   Analysis of silicon waveguide structure for realization of optical MUX/DEMUX circuit: An application of silicon photonics [J].
Dalai, P. K. ;
Sarkar, P. ;
Palai, G. .
OPTIK, 2016, 127 (22) :10569-10574
[5]   Realization of 'non-linear invisibility cloak' using meta-material [J].
Dash, R. K. ;
Sahu, S. K. ;
Mishra, C. S. ;
Sethi, K. ;
Palai, G. ;
Sahu, Sudhakar .
OPTIK, 2016, 127 (20) :9635-9639
[6]  
Forouhi A. R., 1991, HANDBOOK OF OPTICAL
[7]  
Gary Davis, 1989, SOUND REINFORCEMENT, P4
[8]   Biological thermal detection: Micromechanical and microthermal properties of biological infrared receptors [J].
Gorbunov, V ;
Fuchigami, N ;
Stone, M ;
Grace, M ;
Tsukruk, VV .
BIOMACROMOLECULES, 2002, 3 (01) :106-115
[9]  
Hao Y., 2009, FDTD modeling of metamaterials: theory and applications
[10]   Thermal modeling of snake infrared reception: Evidence for limited detection range [J].
Jones, BS ;
Lynn, WF ;
Stone, MO .
JOURNAL OF THEORETICAL BIOLOGY, 2001, 209 (02) :201-211