共 15 条
Generation of free oxygen atoms O(3P) in solution by photolysis of 4-benzoylpyridine N-oxide
被引:4
|作者:
Carraher, Jack M.
[1
,2
]
Bakac, Andreja
[1
,2
]
机构:
[1] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
[2] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
关键词:
LASER FLASH-PHOTOLYSIS;
ELECTRON-TRANSFER;
AQUEOUS-SOLUTIONS;
RATE CONSTANTS;
METAL-COMPLEXES;
EXCITED-STATES;
URANYL-ION;
PHOTOCHEMISTRY;
RADICALS;
SULFOXIDE;
D O I:
10.1039/c4cp02751e
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Laser flash photolysis of 4-benzoylpyridine N-oxide (BPyO) at 308 nm in aqueous solutions generates a triplet excited state (BPyO)-B-3* that absorbs strongly in the visible, lambda max 490 and 380 nm. (BPyO)-B-3* decays with the rate law k(decay)/S-1 = (3.3 +/- 0.9) x 10(4) + (1.5 +/- 0.2) x 10(9) [BPyO] to generate a mixture of isomeric hydroxylated benzoylpyridines, BPy(OH), in addition to small amounts of oxygen atoms, O(P-3). Molecular oxygen quenches (BPyO)-B-3*, k(Q) = 1.4 x 10(9) M-1 s(-1), but the yields of O(P-3) increase in O-2-saturated solutions to 36%. Other triplet quenchers have a similar effect, which rules out the observed (BPyO)-B-3* as a source of O(P-3). It is concluded that O(P-3) is produced from either (BPyO)-B-1* or a short-lived, unobserved, higher energy triplet generated directly from (BPyO)-B-1*. (BPyO)-B-3* is reduced by Fe2+ and by ABTS(2-) to the radical anion BPyO center dot- which exhibits a maximum at 510 nm, epsilon = 2200 M-1 cm(-1). The anion engages in back electron transfer with ABTS(center dot-) with k = 1.7 x 10(9) M-1 s(-1). The same species can be generated by reducing ground state BPyO with C-center dot(CH3)(2)OH. The photochemistry of BPyO in acetonitrile is similar to that in aqueous solutions.
引用
收藏
页码:19429 / 19436
页数:8
相关论文