Learning to Grasp 3D Objects using Deep Residual U-Nets

被引:0
|
作者
Li, Yikun [1 ]
Schomaker, Lambert [1 ]
Kasaei, S. Hamidreza [1 ]
机构
[1] Univ Groningen, Fac Sci & Engn Artificial Intelligence & Comp Sci, NL-9700 AB Groningen, Netherlands
来源
2020 29TH IEEE INTERNATIONAL CONFERENCE ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN) | 2020年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Grasp synthesis is one of the challenging tasks for any robot object manipulation task. In this paper, we present a new deep learning-based grasp synthesis approach for 3D objects. In particular, we propose an end-to-end 3D Convolutional Neural Network to predict the objects' graspable areas. We named our approach Res-U-Net since the architecture of the network is designed based on U-Net structure and residual network-styled blocks. It devised to plan 6-DOF grasps for any desired object, be efficient to compute and use, and be robust against varying point cloud density and Gaussian noise. We have performed extensive experiments to assess the performance of the proposed approach concerning graspable part detection, grasp success rate, and robustness to varying point cloud density and Gaussian noise. Experiments validate the promising performance of the proposed architecture in all aspects. A video showing the performance of our approach in the simulation environment can be found at http://youtu.be/5_yAJCc8owo
引用
收藏
页码:781 / 787
页数:7
相关论文
共 50 条
  • [1] Mesh U-Nets for 3D Cardiac Deformation Modeling
    Beetz, Marcel
    Acero, Jorge Corral
    Banerjee, Abhirup
    Eitel, Ingo
    Zacur, Ernesto
    Lange, Torben
    Stiermaier, Thomas
    Evertz, Ruben
    Backhaus, Soeren J.
    Thiele, Holger
    Bueno-Orovio, Alfonso
    Lamata, Pablo
    Schuster, Andreas
    Grau, Vicente
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: REGULAR AND CMRXMOTION CHALLENGE PAPERS, STACOM 2022, 2022, 13593 : 245 - 257
  • [2] Segmenting Brain Tumors from MRI Using Cascaded 3D U-Nets
    Kotowski, Krzysztof
    Adamski, Szymon
    Malara, Wojciech
    Machura, Bartosz
    Zarudzki, Lukasz
    Nalepa, Jakub
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 265 - 277
  • [3] ANNOTATION-EFFICIENT 3D U-NETS FOR BRAIN PLASTICITY NETWORK MAPPING
    Gjesteby, Lars A.
    Klinghoffer, Tzofi
    Ash, Meagan
    Melton, Matthew A.
    Otto, Kevin J.
    Lamb, Damon G.
    Burke, Sara N.
    Brattain, Laura J.
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1373 - 1377
  • [4] A novel method for glioma segmentation and classification on pre-operative MRI scans using 3D U-Nets and transfer learning
    Srivastava G.R.
    Gera P.
    Rani R.
    Jaiswal G.
    Sharma A.
    Multimedia Tools and Applications, 2025, 84 (7) : 3569 - 3609
  • [5] Brain Tumor Segmentation Using an Ensemble of 3D U-Nets and Overall Survival Prediction Using Radiomic Features
    Feng, Xue
    Tustison, Nicholas J.
    Patel, Sohil H.
    Meyer, Craig H.
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14
  • [6] Improving wildland fire spread prediction using deep U-Nets
    Khennou, Fadoua
    Akhloufi, Moulay A.
    SCIENCE OF REMOTE SENSING, 2023, 8
  • [7] Learning to denoise astronomical images with U-nets
    Vojtekova, Antonia
    Lieu, Maggie
    Valtchanov, Ivan
    Altieri, Bruno
    Old, Lyndsay
    Chen, Qifeng
    Hroch, Filip
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 503 (03) : 3204 - 3215
  • [8] Brain Tumor Segmentation Using an Ensemble of 3D U-Nets and Overall Survival Prediction Using Radiomic Features
    Feng, Xue
    Tustison, Nicholas J.
    Meyer, Craig H.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 279 - 288
  • [9] Glioma Segmentation Using Ensemble of 2D/3D U-Nets and Survival Prediction Using Multiple Features Fusion
    Ali, Muhammad Junaid
    Akram, Muhammad Tahir
    Saleem, Hira
    Raza, Basit
    Shahid, Ahmad Raza
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 189 - 199
  • [10] Multi-Scale 3D U-Nets: An approach to automatic segmentation of brain tumor
    Peng, Suting
    Chen, Wei
    Sun, Jiawei
    Liu, Boqiang
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2020, 30 (01) : 5 - 17