Synthesis of a nanowire self-assembled hierarchical ZnCo2O4 shell/Ni current collector core as binder-free anodes for high-performance Li-ion batteries

被引:90
作者
Long, Hu [1 ]
Shi, Tielin [1 ,2 ]
Jiang, Shulan [2 ]
Xi, Shuang [2 ]
Chen, Rong [2 ]
Liu, Shiyuan [1 ,2 ]
Liao, Guanglan [2 ]
Tang, Zirong [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
NANOSTRUCTURED MATERIALS; NEGATIVE-ELECTRODE; HIGH-CAPACITY; METAL OXIDE; HIGH-POWER; LITHIUM; STORAGE; SPINEL; ARRAYS; CO3O4;
D O I
10.1039/c3ta15021f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, ZnCo2O4 nanowires have been grown and self-assembled as hierarchical structures on a 3D conductive Ni foam substrate. Both leaf-like ZnCo2O4 and dandelion-like ZnCo2O4 assemblies were synthesized through a hydrothermal process followed by a post-annealing treatment. It is shown that leaf-like assemblies are directly grown on the substrate while dandelion-like assemblies are adsorbed on the surface of the structures. A possible formation mechanism of ZnCo2O4 hierarchical structures was proposed. It is shown that these nanowires are porous structures which provide much increased specific surface area. Further work was conducted by taking these Ni foam supported ZnCo2O4 structures as binder-free electrodes for Li-ion batteries. Remarkably, the leaf-like ZnCo2O4/Ni foam electrode exhibits greatly improved electrochemical performance with high capacity and excellent cycling stability. A high reversible capacity of 1050 mA h g(-1) at the rate of 100 mA g(-1) was obtained after 60 cycles. Meanwhile, the electrode showed a high rate of 416 mA g(-1) with a high capacity of 850 mA h g(-1) even after 50 cycles. Our work demonstrates that this unique nanowire self-assembled ZnCo2O4 hierarchical structure is promising for high-performance electrochemical energy applications.
引用
收藏
页码:3741 / 3748
页数:8
相关论文
共 58 条
[1]   Synthesis and characterization of spinel type ZnCo2O4 as a novel anode material for lithium ion batteries [J].
Ai, CC ;
Yin, MC ;
Wang, CW ;
Sun, JT .
JOURNAL OF MATERIALS SCIENCE, 2004, 39 (03) :1077-1079
[2]  
Al C., 2004, J. Mater. Sci, V39, P1077
[3]   NiCo2O4 spinel:: First report on a transition metal oxide for the negative electrode of sodium-ion batteries [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Tirado, JL .
CHEMISTRY OF MATERIALS, 2002, 14 (07) :2847-+
[4]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[5]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[6]   Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity [J].
Balaya, P ;
Li, H ;
Kienle, L ;
Maier, J .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) :621-625
[7]   Protonated titanates and TiO2 nanostructured materials:: Synthesis, properties, and applications [J].
Bavykin, Dmitry V. ;
Friedrich, Jens M. ;
Walsh, Frank C. .
ADVANCED MATERIALS, 2006, 18 (21) :2807-2824
[8]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[9]   High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes [J].
Chen, Yuejiao ;
Qu, Baihua ;
Hu, Lingling ;
Xu, Zhi ;
Li, Qiuhong ;
Wang, Taihong .
NANOSCALE, 2013, 5 (20) :9812-9820
[10]   Cobalt ferrite thin films as anode material for lithium ion batteries [J].
Chu, YQ ;
Fu, ZW ;
Qin, QZ .
ELECTROCHIMICA ACTA, 2004, 49 (27) :4915-4921